2022
Incorporating family disease history and controlling case–control imbalance for population-based genetic association studies
Zhuang Y, Wolford B, Nam K, Bi W, Zhou W, Willer C, Mukherjee B, Lee S. Incorporating family disease history and controlling case–control imbalance for population-based genetic association studies. Bioinformatics 2022, 38: 4337-4343. PMID: 35876838, PMCID: PMC9477535, DOI: 10.1093/bioinformatics/btac459.Peer-Reviewed Original ResearchConceptsEmpirical saddlepoint approximationFamily disease historyCase-control imbalanceSaddlepoint approximationGenome-wide association analysisPopulation-based genetic association studiesGenetic association testsVariant-phenotype associationsDisease historyGenetic association studiesLow detection powerType I error inflationCorrelation of phenotypesWhite British sampleSupplementary dataAssociation studiesPopulation-based biobanksIncreased phenotypic correlationsKorean GenomeSimulation studyPhenotype distributionPhenotypeAssociation TestBioinformaticsPhenotypic correlations
2019
A Fast and Accurate Method for Genome-wide Scale Phenome-wide G × E Analysis and Its Application to UK Biobank
Bi W, Zhao Z, Dey R, Fritsche L, Mukherjee B, Lee S. A Fast and Accurate Method for Genome-wide Scale Phenome-wide G × E Analysis and Its Application to UK Biobank. American Journal Of Human Genetics 2019, 105: 1182-1192. PMID: 31735295, PMCID: PMC6904814, DOI: 10.1016/j.ajhg.2019.10.008.Peer-Reviewed Original ResearchConceptsCase-control ratioGenome-wide significance levelMeasures of environmental exposureGenome-wide analysisEuropean ancestry samplesGenetic association studiesSaddlepoint approximationCase-control imbalanceAnalysis of phenotypesGene-environment interactionsPopulation-based biobanksControlled type I error ratesAssociation studiesG x E effectsUK BiobankType I error rateGenetic variantsE analysisSPAGEComplex diseasesEnvironmental exposuresTest statisticsE studySimulation studyWald test