Featured Publications
Set‐based tests for genetic association in longitudinal studies
He Z, Zhang M, Lee S, Smith J, Guo X, Palmas W, Kardia S, Diez Roux A, Mukherjee B. Set‐based tests for genetic association in longitudinal studies. Biometrics 2015, 71: 606-615. PMID: 25854837, PMCID: PMC4601568, DOI: 10.1111/biom.12310.Peer-Reviewed Original ResearchConceptsMulti-Ethnic Study of AtherosclerosisGenome-wide association studiesJoint effect of multiple variantsLinkage disequilibriumAssociation studiesEffects of multiple variantsMarkers of chronic diseaseGenetic variantsSet-based testGene-based testsLongitudinal outcomesMulti-Ethnic StudyGenetic association studiesStudy of AtherosclerosisChronic diseasesPhenotypic variationGenetic associationObservational studyLongitudinal analysisWithin-subject correlationMultiple variantsScore type testsJoint testJoint effectsMarker testsSet-Based Tests for the Gene–Environment Interaction in Longitudinal Studies
He Z, Zhang M, Lee S, Smith J, Kardia S, Roux V, Mukherjee B. Set-Based Tests for the Gene–Environment Interaction in Longitudinal Studies. Journal Of The American Statistical Association 2017, 112: 966-978. PMID: 29780190, PMCID: PMC5954413, DOI: 10.1080/01621459.2016.1252266.Peer-Reviewed Original ResearchGene-environment interactionsMulti-Ethnic Study of AtherosclerosisSet-based testMeasures of neighborhood environmentMarginal genetic associationsEnvironmental exposuresMulti-Ethnic StudyStudy of AtherosclerosisNeighborhood environmentMeasurement of blood pressureGene-environmentMain-effects modelScore type testsMethod of sievesLongitudinal measures of blood pressureRobust to misspecificationGenetic associationGenetic variantsLongitudinal studyMain effectStudy periodEffects modelContinuous environmental exposurePotential biasIndependent conditions
2018
Subset-Based Analysis Using Gene-Environment Interactions for Discovery of Genetic Associations across Multiple Studies or Phenotypes
Yu Y, Xia L, Lee S, Zhou X, Stringham H, Boehnke M, Mukherjee B. Subset-Based Analysis Using Gene-Environment Interactions for Discovery of Genetic Associations across Multiple Studies or Phenotypes. Human Heredity 2018, 83: 283-314. PMID: 31132756, PMCID: PMC7034441, DOI: 10.1159/000496867.Peer-Reviewed Original ResearchMeSH KeywordsCase-Control StudiesCholesterolCohort StudiesComputer SimulationC-Reactive ProteinFinlandGene FrequencyGene-Environment InteractionGenetic Predisposition to DiseaseGenome-Wide Association StudyHumansLipoproteins, LDLMeta-Analysis as TopicModels, GeneticPhenotypePolymorphism, Single NucleotideConceptsPresence of G-E interactionsGenetic associationHeterogeneity of genetic effectsDiscovery of genetic associationsGene-environment (G-EMarginal genetic effectsG-E interactionsGenome-wide association studiesGene-environment interactionsGenetic effectsData examplesSimulation studySingle nucleotide polymorphismsGene-environmentAssociation studiesAssociation analysisScreening toolMarginal associationNucleotide polymorphismsPresence of heterogeneityAssociationEnvironmental factorsIncreased powerMultiple studiesG-E
2016
Tests for Gene-Environment Interactions and Joint Effects With Exposure Misclassification
Boonstra P, Mukherjee B, Gruber S, Ahn J, Schmit S, Chatterjee N. Tests for Gene-Environment Interactions and Joint Effects With Exposure Misclassification. American Journal Of Epidemiology 2016, 183: 237-247. PMID: 26755675, PMCID: PMC4724093, DOI: 10.1093/aje/kwv198.Peer-Reviewed Original ResearchConceptsG-E interactionsPresence of exposure misclassificationExposure misclassificationImpact of exposure misclassificationGene-environment (G-EGene-environment interactionsGenome-wide levelGenome-wide searchGenome-wide testingGenetic susceptibility lociJoint testDisease-gene relationshipsGene-environmentGenetic risk factorsType I error rateFamily-wise type I error rateSusceptibility lociG-EGenetic associationRisk factorsStatistical powerJoint effectsSimulation studyMisclassificationPublished simulation studies
2006
Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure
Zhang L, Mukherjee B, Ghosh M, Wu R. Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure. Statistical Modelling 2006, 6: 352-372. DOI: 10.1177/1471082006071841.Peer-Reviewed Original ResearchPopulation substructureCase-control studyGenetic association studiesLog odds ratio parametersOdds ratio parametersAssociation studiesAllele frequenciesGenetic associationParametric Bayesian methodsArgentinean populationBayesian modelCredible intervalsGenetic factorsBayesian methodsStatistical propertiesNumerical integration techniquesPosterior probabilityAssociation modelPopulationAllelesGenesAssociationIntegration techniqueMarkovObesity