2019
A Fast and Accurate Method for Genome-wide Scale Phenome-wide G × E Analysis and Its Application to UK Biobank
Bi W, Zhao Z, Dey R, Fritsche L, Mukherjee B, Lee S. A Fast and Accurate Method for Genome-wide Scale Phenome-wide G × E Analysis and Its Application to UK Biobank. American Journal Of Human Genetics 2019, 105: 1182-1192. PMID: 31735295, PMCID: PMC6904814, DOI: 10.1016/j.ajhg.2019.10.008.Peer-Reviewed Original ResearchConceptsCase-control ratioGenome-wide significance levelMeasures of environmental exposureGenome-wide analysisEuropean ancestry samplesGenetic association studiesSaddlepoint approximationCase-control imbalanceAnalysis of phenotypesGene-environment interactionsPopulation-based biobanksControlled type I error ratesAssociation studiesG x E effectsUK BiobankType I error rateGenetic variantsE analysisSPAGEComplex diseasesEnvironmental exposuresTest statisticsE studySimulation studyWald test
2016
Classification and Clustering Methods for Multiple Environmental Factors in Gene–Environment Interaction
Ko Y, Mukherjee B, Smith J, Kardia S, Allison M, Roux A. Classification and Clustering Methods for Multiple Environmental Factors in Gene–Environment Interaction. Epidemiology 2016, 27: 870-878. PMID: 27479650, PMCID: PMC5039086, DOI: 10.1097/ede.0000000000000548.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overAtherosclerosisBayes TheoremCluster AnalysisData Interpretation, StatisticalEnvironmental ExposureEpidemiologic Research DesignFemaleFollow-Up StudiesGene-Environment InteractionGenetic Predisposition to DiseaseHumansMiddle AgedModels, StatisticalRegression AnalysisRisk FactorsConceptsMultiple environmental exposuresGene-environment interactionsG x EEnvironmental exposuresMultiethnic Study of AtherosclerosisStudy of AtherosclerosisGene-environmentEffect modificationMultiethnic StudyEnvironmental factorsExposure subgroupsEnvironmental exposure profilesMain effectExposure profilesE studyEfficient analysis strategyE analysisMultiple environmental factorsSubgroupsAnalysis strategyFactorsExposureProduct terms
2011
A Latent Variable Approach to Study Gene–Environment Interactions in the Presence of Multiple Correlated Exposures
Sánchez B, Kang S, Mukherjee B. A Latent Variable Approach to Study Gene–Environment Interactions in the Presence of Multiple Correlated Exposures. Biometrics 2011, 68: 466-476. PMID: 21955029, PMCID: PMC4405908, DOI: 10.1111/j.1541-0420.2011.01677.x.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceBiasBiometryBirth WeightCase-Control StudiesComputer SimulationEnvironmental ExposureEpidemiologic FactorsFemaleGene-Environment InteractionHumansInfant, NewbornIronLead PoisoningModels, StatisticalPregnancyPrenatal Exposure Delayed EffectsPrincipal Component AnalysisConceptsGene-environment interactionsGene-environmentEnvironmental epidemiologyCohort studyGene-environment dependenceBurden of multiple testingStudy gene-environment interactionsEnvironmental exposuresExposure dataEarly life exposuresLV frameworkG x E effectsHealth StudyCorrelated exposuresG x EDisease riskLife exposureMultiple testingFunction of environmental exposureE studyGenotype categoriesStudy of lead exposureBirth weightIron metabolism genesAdaptive trade-off