2003
Fibronectin blocks p38 and jnk activation by cyclic strain in Caco-2 cells
Zhang J, Li W, Sumpio BE, Basson MD. Fibronectin blocks p38 and jnk activation by cyclic strain in Caco-2 cells. Biochemical And Biophysical Research Communications 2003, 306: 746-749. PMID: 12810082, DOI: 10.1016/s0006-291x(03)01044-1.Peer-Reviewed Original ResearchMeSH KeywordsCaco-2 CellsCell Culture TechniquesCollagen Type ICollagen Type IVFibronectinsHumansJNK Mitogen-Activated Protein KinasesLamininMitogen-Activated Protein KinasesP38 Mitogen-Activated Protein KinasesPhosphorylationStress, MechanicalConceptsIntestinal epithelial responsesIntestinal epithelial proliferationCaco-2 intestinal epithelial cellsIntestinal epithelial cellsHuman Caco-2 intestinal epithelial cellsCaco-2 cellsPlasma fibronectinInfectious conditionsEpithelial responseFibronectin levelsEpithelial proliferationIntestinal epitheliumEpithelial cellsRepetitive forcesBasement membraneCollagen ICollagen IVIntracellular signalingP38JNK activationActivationCellsStrain activationTissueFibronectinAntisense basic fibroblast growth factor alters the time course of mitogen-activated protein kinase in arterialized vein graft remodeling
Yamashita A, Hanna AK, Hirata S, Dardik A, Sumpio BE. Antisense basic fibroblast growth factor alters the time course of mitogen-activated protein kinase in arterialized vein graft remodeling. Journal Of Vascular Surgery 2003, 37: 866-873. PMID: 12663990, DOI: 10.1067/mva.2003.130.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood Vessel ProsthesisCell Physiological PhenomenaEndothelium, VascularFibroblast Growth FactorsHyperplasiaJNK Mitogen-Activated Protein KinasesMitogen-Activated Protein KinasesModels, AnimalP38 Mitogen-Activated Protein KinasesProteinsRabbitsRegenerationRNA, AntisenseTime FactorsTransfectionVeinsConceptsProtein kinaseBasic fibroblast growth factorMAPK activationFibroblast growth factorMitogen-activated protein kinase (MAPK) familyC-Jun N-terminal protein kinaseProtein kinase familyExtracellular signal-regulated kinase 1/2Antisense basic fibroblast growth factorMitogen-activated protein kinaseSignal-regulated kinase 1/2Messenger RNA sequencesP38 kinase activationGrowth factor altersMAPK-dependent mechanismFibroblast growth factor activityGrowth factorKinase familyKinase activationGrowth factor activityPhosphorylation of MAPKsKinase 1/2RNA sequencesWestern blot analysisBasic fibroblast growth factor activityModulation of vascular smooth muscle cell alignment by cyclic strain is dependent on reactive oxygen species and P38 mitogen-activated protein kinase
Chen Q, Li W, Quan Z, Sumpio BE. Modulation of vascular smooth muscle cell alignment by cyclic strain is dependent on reactive oxygen species and P38 mitogen-activated protein kinase. Journal Of Vascular Surgery 2003, 37: 660-668. PMID: 12618707, DOI: 10.1067/mva.2003.95.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaCattleCells, CulturedEnzyme ActivationEnzyme InhibitorsImidazolesJNK Mitogen-Activated Protein KinasesMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Mitogen-Activated Protein KinasesMultienzyme ComplexesMuscle, Smooth, VascularNADH, NADPH OxidoreductasesNADPH OxidasesOnium CompoundsOxidation-ReductionP38 Mitogen-Activated Protein KinasesPhosphorylationPyridinesReactive Oxygen SpeciesStress, Mechanical
2000
Role of mitogen-activated protein kinases in pulmonary endothelial cells exposed to cyclic strain
Kito H, Chen E, Wang X, Ikeda M, Azuma N, Nakajima N, Gahtan V, Sumpio B. Role of mitogen-activated protein kinases in pulmonary endothelial cells exposed to cyclic strain. Journal Of Applied Physiology 2000, 89: 2391-2400. PMID: 11090594, DOI: 10.1152/jappl.2000.89.6.2391.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCattleCell MovementCells, CulturedEndothelium, VascularEnzyme ActivationEnzyme InhibitorsFlavonoidsImidazolesJNK Mitogen-Activated Protein KinasesMitogen-Activated Protein KinasesP38 Mitogen-Activated Protein KinasesPhosphorylationPromoter Regions, GeneticPulmonary ArteryPyridinesResponse ElementsStress, MechanicalTetradecanoylphorbol AcetateTranscription Factor AP-1ConceptsPD 98059Activator protein-1SB 203580Protein kinaseBovine pulmonary arterial endothelial cellsPulmonary arterial endothelial cellsArterial endothelial cellsMAPK kinase kinase-1Mitogen-activated protein kinase activationMitogen-activated protein kinaseExtracellular signal-regulated kinaseTerminal protein kinaseKinase kinase 1AP-1/Cell alignmentERK kinase inhibitorProtein kinase activationSignal-regulated kinaseEndothelial cellsTranscriptional activationInactive mutantActivated MAPKsKinase activationKinase 1Transient transfectionEndothelial cell response to different mechanical forces
Azuma N, Duzgun S, Ikeda M, Kito H, Akasaka N, Sasajima T, Sumpio B. Endothelial cell response to different mechanical forces. Journal Of Vascular Surgery 2000, 32: 789-794. PMID: 11013043, DOI: 10.1067/mva.2000.107989.Peer-Reviewed Original ResearchAnimalsAortaCattleCells, CulturedEndothelium, VascularEnzyme ActivationFocal Adhesion Kinase 1Focal Adhesion Protein-Tyrosine KinasesFocal AdhesionsHumansImmunoblottingJNK Mitogen-Activated Protein KinasesMechanoreceptorsMitogen-Activated Protein KinasesPhosphorylationProtein-Tyrosine KinasesSignal TransductionStress, MechanicalMitogen‐activated protein phosphorylation in endothelial cells exposed to hyperosmolar conditions
Duzgun S, Rasque H, Kito H, Azuma N, Li W, Basson M, Gahtan V, Dudrick S, Sumpio B. Mitogen‐activated protein phosphorylation in endothelial cells exposed to hyperosmolar conditions. Journal Of Cellular Biochemistry 2000, 76: 567-571. PMID: 10653976, DOI: 10.1002/(sici)1097-4644(20000315)76:4<567::aid-jcb5>3.0.co;2-w.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalcium-Calmodulin-Dependent Protein KinasesCattleCell SizeEndothelium, VascularGlucoseJNK Mitogen-Activated Protein KinasesMannitolMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Mitogen-Activated Protein KinasesOsmolar ConcentrationOsmotic PressureP38 Mitogen-Activated Protein KinasesPhosphorylationSignal TransductionSodium ChlorideTime FactorsUrea
1999
Distinct roles for the small GTPases Cdc42 and Rho in endothelial responses to shear stress
Li S, Chen B, Azuma N, Hu Y, Wu S, Sumpio B, Shyy J, Chien S. Distinct roles for the small GTPases Cdc42 and Rho in endothelial responses to shear stress. Journal Of Clinical Investigation 1999, 103: 1141-1150. PMID: 10207166, PMCID: PMC408275, DOI: 10.1172/jci5367.Peer-Reviewed Original ResearchAnimalsBiological TransportCalcium-Calmodulin-Dependent Protein KinasesCattleCdc42 GTP-Binding ProteinCell Cycle ProteinsCells, CulturedCytoskeletonEndothelium, VascularGTP PhosphohydrolasesGTP-Binding ProteinsIntracellular Signaling Peptides and ProteinsJNK Mitogen-Activated Protein KinasesMitogen-Activated Protein KinasesPhysical StimulationProtein Serine-Threonine KinasesResponse ElementsRho GTP-Binding ProteinsRhoA GTP-Binding ProteinRho-Associated KinasesTranscription Factor AP-1