2001
ATP-Bound States of GroEL Captured by Cryo-Electron Microscopy
Ranson N, Farr G, Roseman A, Gowen B, Fenton W, Horwich A, Saibil H. ATP-Bound States of GroEL Captured by Cryo-Electron Microscopy. Cell 2001, 107: 869-879. PMID: 11779463, DOI: 10.1016/s0092-8674(01)00617-1.Peer-Reviewed Original ResearchConceptsCryo-electron microscopySalt-bridge contactsGroEL ringGroEL-GroESChaperonin GroELSalt bridge interactionsCryo-EMMolecular machinesADP complexGroELATPRing complexBridge interactionEffect of ATPCooperativityOpposite ringIntermediate domainGroESGeneral insightsComplexesPolypeptideDomainBridge contactsStructural modelAffinityGroEL/GroES-Mediated Folding of a Protein Too Large to Be Encapsulated
Chaudhuri T, Farr G, Fenton W, Rospert S, Horwich A. GroEL/GroES-Mediated Folding of a Protein Too Large to Be Encapsulated. Cell 2001, 107: 235-246. PMID: 11672530, DOI: 10.1016/s0092-8674(01)00523-2.Peer-Reviewed Original ResearchFolding of malate dehydrogenase inside the GroEL–GroES cavity
Chen J, Walter S, Horwich A, Smith D. Folding of malate dehydrogenase inside the GroEL–GroES cavity. Nature Structural & Molecular Biology 2001, 8: 721-728. PMID: 11473265, DOI: 10.1038/90443.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsBinding SitesChaperonin 10Chaperonin 60Chromatography, High Pressure LiquidDeuteriumDimerizationHydrogen BondingKineticsMalate DehydrogenaseMass SpectrometryMitochondria, HeartModels, MolecularPeptide FragmentsProtein BindingProtein DenaturationProtein FoldingProtein Structure, SecondaryProtein Structure, TertiaryProtein SubunitsSwineConceptsMalate dehydrogenaseNonnative substrate proteinGroEL-GroES cavitySubstrate proteinsProductive foldingChaperonin GroELApical domainGroESGroELMechanical unfoldingGlobal destabilizationSecondary structureHydrophilic chamberCentral cavityInitial proteinDeuterium exchangeFoldingProteinATPDehydrogenaseHydrophobic central cavityMass spectrometryOpen ringPolypeptideUnfoldingAllostery and protein substrate conformational change during GroEL/GroES-mediated protein folding
Saibil H, Horwich A, Fenton W. Allostery and protein substrate conformational change during GroEL/GroES-mediated protein folding. Advances In Protein Chemistry 2001, 59: 45-72. PMID: 11868280, DOI: 10.1016/s0065-3233(01)59002-6.Peer-Reviewed Original ResearchConceptsProtein foldingATP-dependent protein foldingChloroplasts of eukaryotesDouble-ring complexesCo-chaperonin GroESC-terminal portionChaperonin machineProtein folding reactionChaperonin systemSubstrate polypeptidesChaperonin complexGroEL-GroESHeptameric ringsGroEL subunitStructural biologyBiophysical approachesEquatorial domainATPase mechanismConformational changesSubstrate conformational changesFolding reactionNative formGroESFoldingGroEL
2000
Multivalent Binding of Nonnative Substrate Proteins by the Chaperonin GroEL
Farr G, Furtak K, Rowland M, Ranson N, Saibil H, Kirchhausen T, Horwich A. Multivalent Binding of Nonnative Substrate Proteins by the Chaperonin GroEL. Cell 2000, 100: 561-573. PMID: 10721993, DOI: 10.1016/s0092-8674(00)80692-3.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsBacterial ProteinsBinding SitesCattleChaperonin 10Chaperonin 60Chemical PhenomenaChemistry, PhysicalCryoelectron MicroscopyCystineEscherichia coliEthylmaleimideImage Processing, Computer-AssistedMacromolecular SubstancesMalate DehydrogenaseModels, MolecularPeptidesProtein BindingProtein ConformationProtein FoldingProtein Structure, TertiaryRibulose-Bisphosphate CarboxylaseStructure-Activity RelationshipThiosulfate SulfurtransferaseConceptsNonnative substrate proteinApical domainSubstrate proteinsChaperonin GroELWild-type domainCross-linking experimentsCochaperonin GroESNonnative proteinsProductive foldingGroEL ringSingle polypeptideHydrophobic residuesMalate dehydrogenaseBinary complex formationRubiscoProteinInside aspectMultivalent bindingGroELCentral cavityComplex formationBindingDomainGroESOpen ring
1999
Global unfolding of a substrate protein by the Hsp100 chaperone ClpA
Weber-Ban E, Reid B, Miranker A, Horwich A. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 1999, 401: 90-93. PMID: 10485712, DOI: 10.1038/43481.Peer-Reviewed Original ResearchConceptsSubstrate proteinsATP-dependent degradationGreen fluorescent protein GFPHydrogen exchange experimentsStable monomeric proteinFluorescent protein GFPNon-native formsChaperone ClpAChaperone familyEukaryotic proteinsProtease ClpPPresence of ATPChaperonin GroELHexameric ringClpAProteasome functionProtein GFPProtein structureMonomeric proteinNative proteinGlobal unfoldingProteinCentral channelRecognition peptideClpAPGroEL-GroES Cycling ATP and Nonnative Polypeptide Direct Alternation of Folding-Active Rings
Rye H, Roseman A, Chen S, Furtak K, Fenton W, Saibil H, Horwich A. GroEL-GroES Cycling ATP and Nonnative Polypeptide Direct Alternation of Folding-Active Rings. Cell 1999, 97: 325-338. PMID: 10319813, DOI: 10.1016/s0092-8674(00)80742-4.Peer-Reviewed Original Research
1998
STRUCTURE AND FUNCTION IN GroEL-MEDIATED PROTEIN FOLDING
Sigler P, Xu Z, Rye H, Burston S, Fenton W, Horwich A. STRUCTURE AND FUNCTION IN GroEL-MEDIATED PROTEIN FOLDING. Annual Review Of Biochemistry 1998, 67: 581-608. PMID: 9759498, DOI: 10.1146/annurev.biochem.67.1.581.Peer-Reviewed Original ResearchConceptsProtein foldingNative stateMechanism of chaperoninsCis ternary complexAsymmetric conformational changesFinal native stateNonnative polypeptidesCochaperonin GroESGroEL ringTrans ringATP hydrolysisGenetic informationChaperonin moleculesConformational changesFolding processFoldingTernary complexPolypeptideGroESATPBiochemical investigationsFinal stepChaperoninGroELComplexesThe Hsp70 and Hsp60 Chaperone Machines
Bukau B, Horwich A. The Hsp70 and Hsp60 Chaperone Machines. Cell 1998, 92: 351-366. PMID: 9476895, DOI: 10.1016/s0092-8674(00)80928-9.Peer-Reviewed Original Research[11] Construction of single-ring and two-ring hybrid versions of bacterial chaperonin GroEL
Horwich A, Burston S, Rye H, Weissman J, Fenton W. [11] Construction of single-ring and two-ring hybrid versions of bacterial chaperonin GroEL. Methods In Enzymology 1998, 290: 141-146. PMID: 9534157, DOI: 10.1016/s0076-6879(98)90013-1.Peer-Reviewed Original ResearchConceptsBacterial chaperonin GroELGreen fluorescent proteinChaperonin GroELDouble-ring assemblyAddition of GroESDouble-ring complexesSingle-ring versionUnliganded GroELBacterial chaperoninsGroEL ringNeighboring subunitProtein foldsGroELEquatorial domainNonnative formsFluorescent proteinGroESNative stateNative formCentral channelCritical signalingSubunitsSignalingForm contactsNormal ATP
1997
The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex
Xu Z, Horwich A, Sigler P. The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature 1997, 388: 741-750. PMID: 9285585, DOI: 10.1038/41944.Peer-Reviewed Original ResearchConceptsGroEL-GroESApical domainCis ringMulti-subunit protein assembliesCo-chaperonin GroESRings of subunitsPeptide-binding residuesChaperonin complexConsumption of ATPProtein foldingGroEL subunitProtein assembliesTrans ringAllosteric mechanismGroESEquatorial domainBloc movementDouble toroidSecond GroESEscherichia coliOutward tiltAsymmetric intermediatesCentral cavitySubunitsInward tiltDistinct actions of cis and trans ATP within the double ring of the chaperonin GroEL
Rye H, Burston S, Fenton W, Beechem J, Xu Z, Sigler P, Horwich A. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 1997, 388: 792-798. PMID: 9285593, DOI: 10.1038/42047.Peer-Reviewed Original ResearchConceptsTrans ringProductive foldingGroES complexChaperonin GroELCis ringCo-chaperone GroESDouble-ring complexesCis ternary complexNon-hydrolysable ATPHydrolysis of ATPGroEL functionGroEL-ATPATP bindingEfficient foldingBinds ATPATP hydrolysisGroESMutant formsMalate dehydrogenaseGroELAMP-PNPDouble-ring structureFoldingTernary complexATPChaperonin-Mediated Folding in the Eukaryotic Cytosol Proceeds through Rounds of Release of Native and Nonnative Forms
Farr G, Scharl E, Schumacher R, Sondek S, Horwich A. Chaperonin-Mediated Folding in the Eukaryotic Cytosol Proceeds through Rounds of Release of Native and Nonnative Forms. Cell 1997, 89: 927-937. PMID: 9200611, DOI: 10.1016/s0092-8674(00)80278-0.Peer-Reviewed Original ResearchConceptsRounds of releaseSubstrate proteinsNonnative formsNative formChaperonin-mediated foldingEukaryotic cytosolic chaperoninATP-dependent foldingIntact Xenopus oocytesCytosolic chaperoninBacterial chaperoninsEukaryotic cytosolChaperoninNative stateXenopus oocytesEssential roleSingle roundFoldingProteinActinTubulinOverall mechanismGroELTransducinCytosolSmall fractionGroEL‐Mediated protein folding
Fenton W, Horwich A. GroEL‐Mediated protein folding. Protein Science 1997, 6: 743-760. PMID: 9098884, PMCID: PMC2144759, DOI: 10.1002/pro.5560060401.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateChaperonin 10Chaperonin 60HydrolysisPeptidesProtein BindingProtein FoldingConceptsGroEL-GroESNonnative polypeptidesSubstrate proteinsATP bindingProtein foldingHomologous proteinsNonnative formsPrimary structureConformational changesGroELTernary complexPolypeptideAssociation 5FoldingProteinBindingChaperonesGroESConformationEnergy landscapeRole of hydrophobicityPathway 3RolePathwayComplex C.Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL
Goldberg M, Zhang J, Sondek S, Matthews C, Fox R, Horwich A. Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 1080-1085. PMID: 9037009, PMCID: PMC19747, DOI: 10.1073/pnas.94.4.1080.Peer-Reviewed Original ResearchConceptsNative-like structureChaperonin GroELDihydrofolate reductaseProtein-folding intermediatesNative dihydrofolate reductaseStopped-flow fluorescence experimentsNonnative proteinsSubstrate proteinsProductive foldingPresence of ATPHuman dihydrofolate reductaseHydrogen-deuterium exchangeGroELPrimary structureProteinCentral channelHydrophobic interactionsFluorescence experimentsGroESFoldingSpeciesReductaseNMR spectroscopyDistant partsATP
1996
Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction
Weissman J, Rye H, Fenton W, Beechem J, Horwich A. Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction. Cell 1996, 84: 481-490. PMID: 8608602, DOI: 10.1016/s0092-8674(00)81293-3.Peer-Reviewed Original ResearchConceptsCis ternary complexProtein foldingRelease of GroESAddition of GroESFolding reactionTernary complexNonhydrolyzable ATP analogGroES releaseProtein folding reactionSubstrate proteinsPresence of ATPGroEL mutantGroEL-GroESGroEL complexNonnative substratesATP hydrolysisGroESComplete foldingSubstrate flexibilityATP analogFoldingFluorescence anisotropyActive stateATPRecent studies
1995
Unliganded GroEL at 2.8 Å: structure and functional implications
Sigler P, Horwich A. Unliganded GroEL at 2.8 Å: structure and functional implications. Philosophical Transactions Of The Royal Society B Biological Sciences 1995, 348: 113-119. PMID: 7770481, DOI: 10.1098/rstb.1995.0052.Peer-Reviewed Original ResearchConceptsATP-binding pocketCentral channelUnfolded polypeptidesApical domainThree-dimensional structureExtensive mutagenesisMutational studiesDyad symmetryC-terminusDistinct domainsGroELATP analogBiochemical studiesStructural scaffoldFunctional implicationsHigh saltSubunitsDomainChaperoninGroESMutagenesisEntire lengthCrystal formsPolypeptideSymmetric ringFrom the Cradle to the Grave: Ring Complexes in the Life of a Protein
Weissman J, Sigler P, Horwich A. From the Cradle to the Grave: Ring Complexes in the Life of a Protein. Science 1995, 268: 523-524. PMID: 7725096, DOI: 10.1126/science.7725096.Peer-Reviewed Original ResearchKinesis of polypeptide during GroEL-mediated folding.
Horwich A, Weissman J, Fenton W. Kinesis of polypeptide during GroEL-mediated folding. Cold Spring Harbor Symposia On Quantitative Biology 1995, 60: 435-40. PMID: 8824417, DOI: 10.1101/sqb.1995.060.01.048.Peer-Reviewed Original Research
1994
Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains
Kim S, Willison K, Horwich A. Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends In Biochemical Sciences 1994, 19: 543-548. PMID: 7846767, DOI: 10.1016/0968-0004(94)90058-2.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAmino Acid SequenceBinding SitesBiological EvolutionChaperonin 60ChaperoninsConserved SequenceIntracellular Signaling Peptides and ProteinsMicrotubule-Associated ProteinsMolecular Sequence DataNuclear ProteinsPeptidesSequence AlignmentT-Complex Genome RegionUbiquitin-Protein Ligases