2014
Spectrum of somatic EGFR, KRAS, BRAF, PTEN mutations and TTF-1 expression in Brazilian lung cancer patients
CARNEIRO JG, COUTO PG, BASTOS-RODRIGUES L, BICALHO MA, VIDIGAL PV, VILHENA A, AMARAL NF, BALE AE, FRIEDMAN E, DE MARCO L. Spectrum of somatic EGFR, KRAS, BRAF, PTEN mutations and TTF-1 expression in Brazilian lung cancer patients. Genetics Research 2014, 96: e002. PMID: 24594201, PMCID: PMC7045132, DOI: 10.1017/s0016672314000032.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdultAgedAged, 80 and overBrazilCarcinoma, Non-Small-Cell LungCarcinoma, Squamous CellCase-Control StudiesDNA-Binding ProteinsErbB ReceptorsFemaleGenetic Predisposition to DiseaseHumansImmunoenzyme TechniquesLung NeoplasmsMaleMiddle AgedMutationNeoplasm StagingPolymerase Chain ReactionPrognosisProto-Oncogene ProteinsProto-Oncogene Proteins B-rafProto-Oncogene Proteins p21(ras)PTEN PhosphohydrolaseRas ProteinsTranscription FactorsConceptsNon-small cell lung cancerSquamous cell carcinomaTTF-1 expressionLung cancerTTF-1PTEN mutationsBrazilian lung cancer patientsCancer typesPI3K pathway inhibitorsCell lung cancerCancer-related mortalityLung cancer patientsSomatic mutationsCommon somatic mutationsNSCLC patientsInter-individual variabilityCancer patientsEGFR mutationsTherapeutic responseBrazilian patientsHigh prevalenceKRAS mutationsLung adenocarcinomaSomatic EGFRTreatment response
2009
Characterization of DNA damage-dependent cell cycle checkpoints in a menin-deficient model
Kottemann MC, Bale AE. Characterization of DNA damage-dependent cell cycle checkpoints in a menin-deficient model. DNA Repair 2009, 8: 944-952. PMID: 19608464, PMCID: PMC2745199, DOI: 10.1016/j.dnarep.2009.06.001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtaxia Telangiectasia Mutated ProteinsCell CycleCell Cycle ProteinsCyclin-Dependent Kinase Inhibitor p21DNA DamageEmbryo, MammalianFibroblastsG1 PhaseHistone-Lysine N-MethyltransferaseMiceModels, BiologicalMutagensMutationMyeloid-Lymphoid Leukemia ProteinPhenotypePromoter Regions, GeneticProtein BindingProtein Serine-Threonine KinasesProto-Oncogene ProteinsRadiation, IonizingS PhaseTumor Suppressor Protein p53Up-RegulationConceptsP21 promoterDNA damage-dependent mannerPositive transcriptional regulatorDamage-dependent mannerNormal cellular physiologyCell cycle controlLoss of Men1Intra-S checkpointCell cycle checkpointsMouse embryonic fibroblastsCyclin-dependent kinase inhibitorG1/STranscriptional regulationTranscriptional regulatorsCheckpoint responseCellular physiologyCycle checkpointsHistone methyltransferaseDNA repairEmbryonic fibroblastsTranscriptional capacityCycle controlTarget p21MeninCancer pathogenesis
2006
Multiple endocrine neoplasia type 1 (MEN1) as a cancer predisposition syndrome: clues into the mechanisms of MEN1-related carcinogenesis.
Busygina V, Bale AE. Multiple endocrine neoplasia type 1 (MEN1) as a cancer predisposition syndrome: clues into the mechanisms of MEN1-related carcinogenesis. The Yale Journal Of Biology And Medicine 2006, 79: 105-14. PMID: 17940620, PMCID: PMC1994794.Peer-Reviewed Original ResearchMultiple Endocrine Neoplasia Type 1 Interacts with Forkhead Transcription Factor CHES1 in DNA Damage Response
Busygina V, Kottemann MC, Scott KL, Plon SE, Bale AE. Multiple Endocrine Neoplasia Type 1 Interacts with Forkhead Transcription Factor CHES1 in DNA Damage Response. Cancer Research 2006, 66: 8397-8403. PMID: 16951149, DOI: 10.1158/0008-5472.can-06-0061.Peer-Reviewed Original ResearchConceptsDNA damage responseDamage responseS-phase checkpoint pathwayDrosophila larval tissuesTranscriptional repressor complexS-phase checkpointMouse embryonic fibroblastsHistone deacetylase 1Cell cycle arrestGenetic screenGenomic integrityInteracting proteinRepressor complexS-phase arrestHuman meninMutant fliesBiochemical functionsLarval tissuesMEN1 proteinCancer susceptibility syndromeEmbryonic fibroblastsCheckpoint pathwayCOOH terminusCHES1Menin
2005
Clinical testing for multiple endocrine neoplasia type 1 in a DNA diagnostic laboratory
Klein RD, Salih S, Bessoni J, Bale AE. Clinical testing for multiple endocrine neoplasia type 1 in a DNA diagnostic laboratory. Genetics In Medicine 2005, 7: 131-138. PMID: 15714081, DOI: 10.1097/01.gim.0000153663.62300.f8.Peer-Reviewed Original ResearchConceptsPituitary tumorsSporadic patientsIslet neoplasiaMEN1 mutationsMultiple endocrine neoplasia type 1Islet cell neoplasiaMEN1 genePancreatic islet tumorsFrameshift deletion mutationClinical featuresSomatic mosaicismPancreatic neoplasmsCell neoplasiaHyperparathyroidismBlood samplesPatientsClinical testingIslet tumorsSporadic casesType 1TumorsFamilial casesNeoplasiaSplice site mutationDNA diagnostic laboratories
2002
MEN1 tumor‐suppressor protein localizes to telomeres during meiosis
Suphapeetiporn K, Greally JM, Walpita D, Ashley T, Bale AE. MEN1 tumor‐suppressor protein localizes to telomeres during meiosis. Genes Chromosomes And Cancer 2002, 35: 81-85. PMID: 12203793, DOI: 10.1002/gcc.10113.Peer-Reviewed Original ResearchConceptsSomatic cellsTelomerase activityAbsence of meninTumor suppressor gene MEN1Normal cell physiologyTelomeric protein TRF2Normal telomerase activityTumor suppressor proteinRole of meninMeiotic telomeresTelomere functionProtein TRF2Meiotic cellsTranscriptional activationNuclear proteinsCell physiologyFunctional motifsDifferent proteinsTumor suppressorTelomeresMeninElevated telomerase activityDifferent tissuesJunDCancer predisposition syndrome
1991
Tight linkage of the human c-erbAβ gene with the syndrome of generalized thyroid hormone resistance is present in multiple kindreds
Fein H, Burman K, Djuh Y, Usala S, Bale A, Weintraub B, Smallridge R. Tight linkage of the human c-erbAβ gene with the syndrome of generalized thyroid hormone resistance is present in multiple kindreds. Journal Of Endocrinological Investigation 1991, 14: 219-223. PMID: 1677017, DOI: 10.1007/bf03346792.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceChromosome MappingDeoxyribonuclease BamHIDeoxyribonucleases, Type II Site-SpecificDrug ResistanceErbB ReceptorsGenetic LinkageHumansMolecular Sequence DataMutationPedigreePolymorphism, Restriction Fragment LengthProto-Oncogene ProteinsReceptors, Thyroid HormoneSyndromeThyroid DiseasesThyroid HormonesThyrotropinThyroxineTriiodothyronineA New Point Mutation in the 3,5,3′-Triiodothyronine-Binding Domain of the c-erbAβ Thyroid Hormone Receptor Is Tightly Linked to Generalized Thyroid Hormone Resistance
Usala S, Menke J, Watson T, Bérard W, Bradley C, Bale A, Lash R, Weintraub B. A New Point Mutation in the 3,5,3′-Triiodothyronine-Binding Domain of the c-erbAβ Thyroid Hormone Receptor Is Tightly Linked to Generalized Thyroid Hormone Resistance. The Journal Of Clinical Endocrinology & Metabolism 1991, 72: 32-38. PMID: 1846005, DOI: 10.1210/jcem-72-1-32.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding SitesCytosineDeoxyribonucleases, Type II Site-SpecificDrug ResistanceEndocrine System DiseasesFemaleHumansLod ScoreMaleMolecular Sequence DataMutationPedigreePituitary GlandProto-Oncogene ProteinsReceptors, Thyroid HormoneSyndromeThyroid HormonesThyrotropin-Releasing HormoneTriiodothyronine
1990
A base mutation of the C-erbA beta thyroid hormone receptor in a kindred with generalized thyroid hormone resistance. Molecular heterogeneity in two other kindreds.
Usala S, Tennyson G, Bale A, Lash R, Gesundheit N, Wondisford F, Accili D, Hauser P, Weintraub B. A base mutation of the C-erbA beta thyroid hormone receptor in a kindred with generalized thyroid hormone resistance. Molecular heterogeneity in two other kindreds. Journal Of Clinical Investigation 1990, 85: 93-100. PMID: 2153155, PMCID: PMC296391, DOI: 10.1172/jci114438.Peer-Reviewed Original ResearchConceptsGeneralized thyroid hormone resistanceC-erbA betaThyroid hormone resistanceHormone resistanceBase substitutionsT3-binding domainC-erbA beta geneThyroid hormone receptor genesBeta thyroid hormone receptorThyroid hormone receptorC-erbA beta thyroid hormone receptorHormone receptor geneProline codonsGenomic DNAThyroid hormone actionAltered baseBeta cDNASecondary structureBeta geneNuclear receptorsBase mutationMaximum logarithmPosition 448Receptor geneBeta receptors
1988
Tight Linkage between the Syndrome of Generalized Thyroid Hormone Resistance and the Human c-erbAβ Gene
Usala S, Bale A, Gesundheit N, Weinberger C, Lash R, Wondisford F, McBride O, Weintraub B. Tight Linkage between the Syndrome of Generalized Thyroid Hormone Resistance and the Human c-erbAβ Gene. Endocrinology 1988, 2: 1217-1220. PMID: 2905763, DOI: 10.1210/mend-2-12-1217.Peer-Reviewed Original ResearchConceptsThyroid hormone receptorGeneralized thyroid hormone resistanceBiological functionsC-erbA beta geneC-erbA genesHormone receptorsMutant phenotypeGene familyC-erbA betaC-erbA alphaRestriction enzyme analysisGene productsChromosome 3Multiple cDNAsThyroid hormone resistanceHuman syndromesTight linkageBeta locusGenesBeta geneNuclear receptorsLarge deletionsHormone resistanceEnzyme analysisCertain kindredsA cDNA probe (PheA12) from the hc-(ERBA) gene on chromosome 3 detects a high frequency RFLP
Bale A, Usala S, Weinberger C, Weintraub B, McBride O. A cDNA probe (PheA12) from the hc-(ERBA) gene on chromosome 3 detects a high frequency RFLP. Nucleic Acids Research 1988, 16: 7756-7756. PMID: 2901070, PMCID: PMC338478, DOI: 10.1093/nar/16.15.7756.Peer-Reviewed Original Research