2024
BODIPY Chemisorbed on SnO2 and TiO2 Surfaces for Photoelectrochemical Applications
Jayworth J, Decavoli C, Capobianco M, Menzel J, Adler S, Kocoj C, Freeze J, Crabtree R, Guo P, Batista V, Brudvig G. BODIPY Chemisorbed on SnO2 and TiO2 Surfaces for Photoelectrochemical Applications. ACS Applied Materials & Interfaces 2024, 16: 14841-14851. PMID: 38488153, DOI: 10.1021/acsami.3c18827.Peer-Reviewed Original ResearchCarboxylic acid anchoring groupsAnchoring groupsElectron injectionSolar-driven water splittingTransient absorption spectroscopic studiesDye-sensitized photoelectrochemical cellsEfficiency of electron injectionSacrificial electron donorEfficient electron injectionElectron-hole recombinationAbsorption spectroscopic studiesBODIPY-based dyesWater splittingPhotoelectrochemical applicationsPhotoelectrochemical cellsSemiconducting photoelectrodesTiO2 surfacePhotoelectrochemical studiesPhotoexcited dyeSolar fuelsCharge transferMetal oxidesBinding modeCarboxylic acidsSpectroscopic studies
2022
Ultrafast Charge Relocation Dynamics in Enol–Keto Tautomerization Monitored with a Local Soft-X-ray Probe
Soley M, Videla P, Nibbering E, Batista V. Ultrafast Charge Relocation Dynamics in Enol–Keto Tautomerization Monitored with a Local Soft-X-ray Probe. The Journal Of Physical Chemistry Letters 2022, 13: 8254-8263. PMID: 36018775, PMCID: PMC9465716, DOI: 10.1021/acs.jpclett.2c02037.Peer-Reviewed Original ResearchConceptsSoft X-ray probeSoft X-ray spectroscopyFull quantum treatmentPump-probe spectroscopyUltrafast time scaleQuantum treatmentHydrogen fuel cellsNuclear dynamicsElectronic excitationEnol-keto tautomerizationPCET mechanismOxygen reductionInterplay of protonsFrontier orbitalsWater splittingCharge relocationElectron transferElectronic structure rearrangementLocal excitationTautomerization reactionImportant reactionsFuel cellsElementary stepsChemical reactionsH atoms
2021
Tuning the Conduction Band for Interfacial Electron Transfer: Dye-Sensitized Sn x Ti1–x O2 Photoanodes for Water Splitting
Spies J, Swierk J, Kelly H, Capobianco M, Regan K, Batista V, Brudvig G, Schmuttenmaer C. Tuning the Conduction Band for Interfacial Electron Transfer: Dye-Sensitized Sn x Ti1–x O2 Photoanodes for Water Splitting. ACS Applied Energy Materials 2021, 4: 4695-4703. DOI: 10.1021/acsaem.1c00305.Peer-Reviewed Original ResearchDFT calculationsAbsorption spectroscopyInterfacial electron transfer dynamicsUltrafast transient absorption spectroscopyInterfacial electron transferElectron transfer dynamicsUltrafast electron injectionConduction bandPeriodic DFT calculationsTransient absorption spectroscopyLinear absorption spectroscopyDye sensitizersWater splittingElectron transferTransfer dynamicsComposition of SnElectron acceptorAbsorption spectraElectron injectionD characterElectronic statesSpectroscopyPhotoanodeSnDye
2020
Nanotechnology for catalysis and solar energy conversion
Banin U, Waiskopf N, Hammarstrm L, Boschloo G, Freitag M, Johansson E, S J, Tian H, Johnston M, Herz L, Milot R, Kanatzidis M, Ke W, Spanopoulos I, Kohlstedt K, Schatz G, Lewis N, Meyer T, Nozik A, Beard M, Armstrong F, Megarity C, Schmuttenmaer C, Batista V, Brudvig G. Nanotechnology for catalysis and solar energy conversion. Nanotechnology 2020, 32: 042003. PMID: 33155576, DOI: 10.1088/1361-6528/abbce8.Peer-Reviewed Original ResearchDye-sensitized solar cellsPerovskite solar cellsSolar energy conversionMultiple exciton generationSolar cellsEnergy conversionOrganic photovoltaicsNanoscale characterization methodsNanoscale material characterizationApplication of nanotechnologySolar energy conversion efficiencySolar water splittingConversion efficiencyStructure-property relationshipsNanomaterial synthesisSemiconductor nanoparticlesSingle nanoparticlesScalable manufacturingEnergy conversion efficiencySemiconductor nanostructuresWater splittingFuel conversion efficiencySmart engineeringHybrid halide perovskitesBio-catalysis
2015
Triplet Oxygen Evolution Catalyzed by a Biomimetic Oxomanganese Complex: Functional Role of the Carboxylate Buffer
Rivalta I, Yang K, Brudvig G, Batista V. Triplet Oxygen Evolution Catalyzed by a Biomimetic Oxomanganese Complex: Functional Role of the Carboxylate Buffer. ACS Catalysis 2015, 5: 2384-2390. DOI: 10.1021/acscatal.5b00048.Peer-Reviewed Original ResearchOxomanganese complexesTriplet oxygenOxygen evolutionWater splittingCatalytic oxygen evolutionO bond formationBiomimetic oxomanganese complexesNucleophilic water moleculeUnderlying reaction mechanismGreen plant chloroplastsPhotosynthetic oxygen evolutionWater ligandsCarboxylate ligandsInorganic coreMn complexesSuperoxo speciesNoninnocent roleCarboxylate groupsWater moleculesSubstrate waterBond formationSynthetic complexesCarboxylate buffersNucleophilic attackRedox potential
2013
S0‑State Model of the Oxygen-Evolving Complex of Photosystem II
Pal R, Negre CF, Vogt L, Pokhrel R, Ertem MZ, Brudvig GW, Batista VS. S0‑State Model of the Oxygen-Evolving Complex of Photosystem II. Biochemistry 2013, 52: 7703-7706. PMID: 24125018, DOI: 10.1021/bi401214v.Peer-Reviewed Original ResearchConceptsOxygen-evolving complexS1 transitionQuantum mechanics/molecular mechanics modelsX-ray absorption fine structure spectroscopyExtended X-ray absorption fine structure (EXAFS) spectroscopyQM/MM modelAbsorption fine structure spectroscopyElectron transfer processHydrogen bonding networkFine structure spectroscopyPhotosystem IIX-ray diffraction dataMolecular mechanics modelPCET mechanismKok cycleWater moleculesWater splittingBonding networkS1 stateMn centersStructure spectroscopyS0 stateDiffraction dataMM modelSignificant rearrangement
2011
S1-State Model of the O2-Evolving Complex of Photosystem II
Luber S, Rivalta I, Umena Y, Kawakami K, Shen JR, Kamiya N, Brudvig GW, Batista VS. S1-State Model of the O2-Evolving Complex of Photosystem II. Biochemistry 2011, 50: 6308-6311. PMID: 21678908, PMCID: PMC3139771, DOI: 10.1021/bi200681q.Peer-Reviewed Original ResearchConceptsHigh-resolution spectroscopic dataQuantum mechanics/molecular mechanics modelsExtended X-ray absorption fine structure (EXAFS) dataX-ray absorption fine structure dataFine structure dataPhotosystem IIX-ray diffraction modelOxygen-evolving complexDiffraction modelSingle crystalsMn clusterXRD modelMolecular mechanics modelIntermetallic distanceManganese centersSpectroscopic dataOxidation stateWater splittingCarboxylate moietyCatalytic cycleStructure dataLikely correspondsComplexesSplittingCrystals
2008
Quantum Mechanics/Molecular Mechanics Study of the Catalytic Cycle of Water Splitting in Photosystem II
Sproviero EM, Gascón JA, McEvoy JP, Brudvig GW, Batista VS. Quantum Mechanics/Molecular Mechanics Study of the Catalytic Cycle of Water Splitting in Photosystem II. Journal Of The American Chemical Society 2008, 130: 3428-3442. PMID: 18290643, DOI: 10.1021/ja076130q.Peer-Reviewed Original ResearchConceptsSubstrate water moleculesWater moleculesMu-oxo bridgeOxygen-evolving complexWater splittingQuantum mechanics/molecular mechanics (QM/MM) hybrid methodsQuantum Mechanics/Molecular Mechanics StudySolar fuel production systemsPhotosystem IIX-ray diffraction structureMolecular mechanics studySecond coordination shellCyanobacterium Thermosynechococcus elongatusOxomanganese clusterDioxygen evolutionTerminal ligandsXRD structureCatalytic clustersCP43-R357Ligand exchangeCatalytic reactionCatalytic cycleReaction intermediatesS0 stateNucleophilic attackComputational studies of the O2-evolving complex of photosystem II and biomimetic oxomanganese complexes
Sproviero EM, Gascón JA, McEvoy JP, Brudvig GW, Batista VS. Computational studies of the O2-evolving complex of photosystem II and biomimetic oxomanganese complexes. Coordination Chemistry Reviews 2008, 252: 395-415. PMID: 19190716, PMCID: PMC2350217, DOI: 10.1016/j.ccr.2007.09.006.Peer-Reviewed Original ResearchBiomimetic oxomanganese complexesOxygen-evolving complexOxomanganese complexesWater oxidationPhotosystem IIQuantum mechanics/molecular mechanics (QM/MM) hybrid methodsCatalytic centerQM/MM modelCatalytic metal clustersPhotosynthetic water oxidationX-ray crystallographyX-ray absorption fine structure measurementsAbsorption fine structure measurementsQuantum mechanical studyO2-evolving complexX-ray diffraction dataAmino acid residuesExtended X-ray absorption fine structure (EXAFS) measurementsDetailed molecular levelComputational chemistsWater splittingCatalytic cycleComparative quantum mechanical studyMetal clustersFine structure measurements
2005
The mechanism of photosynthetic water splitting
McEvoy J, Gascon J, Batista V, Brudvig G. The mechanism of photosynthetic water splitting. Photochemical & Photobiological Sciences 2005, 4: 940-949. PMID: 16307106, DOI: 10.1039/b506755c.Peer-Reviewed Original ResearchConceptsProtein complex photosystem IIOxygen-evolving complexWater splittingPhotosynthetic water splittingGreen plant chloroplastsMolecular mechanics calculationsPhotosynthetic light reactionsRecent experimental resultsElectron transfer pathwayX-ray crystallographic modelSource of electronsProton concentration gradientPlant chloroplastsProduct protonsMechanics calculationsOxygenic photosynthesisDioxygen gasThylakoid lumenAerobic lifeElectronsThylakoid membranesCatalytic mechanismChemical energyPhotosystem IIManganese ions