2023
Pot1b −/− tumors activate G-quadruplex-induced DNA damage to promote telomere hyper-elongation
Takasugi T, Gu P, Liang F, Staco I, Chang S. Pot1b −/− tumors activate G-quadruplex-induced DNA damage to promote telomere hyper-elongation. Nucleic Acids Research 2023, 51: 9227-9247. PMID: 37560909, PMCID: PMC10516629, DOI: 10.1093/nar/gkad648.Peer-Reviewed Original ResearchConceptsDNA damage responseDamage responseReplication protein A (RPA) complexDependent DNA damage responseTelomere length homeostasisTelomere maintenance mechanismLength homeostasisTelomerase recruitmentPOT1 proteinsHuman POT1Mouse genomeLength maintenanceFunction disruptsReplicative immortalityTelomeresPOT1 mutationsDNA damageHuman cancersLonger telomeresPOT1bMaintenance mechanismsSerial transplantationA complexesSimilar mechanismMutations
2019
Absence of XRCC4 and its paralogs in human cells reveal differences in outcomes for DNA repair and V(D)J recombination
Ruis B, Molan A, Takasugi T, Hendrickson E. Absence of XRCC4 and its paralogs in human cells reveal differences in outcomes for DNA repair and V(D)J recombination. DNA Repair 2019, 85: 102738. PMID: 31731258, PMCID: PMC6952554, DOI: 10.1016/j.dnarep.2019.102738.Peer-Reviewed Original ResearchConceptsXRCC4-like factorDNA repairC-NHEJDSB repairHuman cellsNon-Homologous End Joining (NHEJ) pathwayDNA DSB repairHuman somatic cellsDNA damaging agentsInfluences DNA repairRepair of DNASpecies-specific differencesCell linesDsb proteinsHigher eukaryotesAccessory factorsParalogsSomatic cellsGenomic instabilityXRCC4 geneDamaging agentsEssential functionsSame cell linePAXXHCT116 cells
2018
CTC1‐STN1 coordinates G‐ and C‐strand synthesis to regulate telomere length
Gu P, Jia S, Takasugi T, Smith E, Nandakumar J, Hendrickson E, Chang S. CTC1‐STN1 coordinates G‐ and C‐strand synthesis to regulate telomere length. Aging Cell 2018, 17: e12783. PMID: 29774655, PMCID: PMC6052479, DOI: 10.1111/acel.12783.Peer-Reviewed Original Research
2017
Mechanisms of precise genome editing using oligonucleotide donors
Kan Y, Ruis B, Takasugi T, Hendrickson E. Mechanisms of precise genome editing using oligonucleotide donors. Genome Research 2017, 27: 1099-1111. PMID: 28356322, PMCID: PMC5495063, DOI: 10.1101/gr.214775.116.Peer-Reviewed Original ResearchConceptsPrecise genome editingSynthesis-dependent strand annealingGenome editingHuman cellsStrand annealingConversion tractsDouble-stranded DNA donorsGenomic lesionsHomology-directed repair (HDR) pathwayCRISPR/Cas9Short conversion tractsFunctional genomicsGene conversionRepair pathwaysShort conversionIncorporation pathwayOligonucleotide donorsHomology donorsDNA donorPathwayCas9EditingUnprecedented easeCellsMeganucleases
2016
Sister chromatid telomere fusions, but not NHEJ-mediated inter-chromosomal telomere fusions, occur independently of DNA ligases 3 and 4
Liddiard K, Ruis B, Takasugi T, Harvey A, Ashelford K, Hendrickson E, Baird D. Sister chromatid telomere fusions, but not NHEJ-mediated inter-chromosomal telomere fusions, occur independently of DNA ligases 3 and 4. Genome Research 2016, 26: 588-600. PMID: 26941250, PMCID: PMC4864465, DOI: 10.1101/gr.200840.115.Peer-Reviewed Original ResearchConceptsFusion eventsLarge-scale genomic rearrangementsCancer genome evolutionDNA ligase 3Nonhomologous end-joining repairTelomere fusion eventsDNA ligase 1DNA ligase 4High-throughput sequence analysisEnd-joining repairGenome evolutionDistinct mutational signaturesGenomic lociTelomere fusionCheckpoint controlSister chromatidsStable genomeCell divisionLigase 1Ligase 3Alternative NHEJNonhomologous endSingle-molecule levelClassical NHEJGenomic rearrangements