2023
The Association Between Obstructive Sleep Apnea and Abnormal 82Rubidium Cardiac PET Perfusion Myocardial Flow Reserve
Aneni E, Thorn S, Feher A, Hong Chen J, Sinusas A, Yaggi H, Miller E. The Association Between Obstructive Sleep Apnea and Abnormal 82Rubidium Cardiac PET Perfusion Myocardial Flow Reserve. JACC Cardiovascular Imaging 2023, 16: 856-858. PMID: 36881426, PMCID: PMC10718199, DOI: 10.1016/j.jcmg.2022.11.024.Peer-Reviewed Original Research
2020
Quantification of myocardial blood flow (MBF) and reserve (MFR) incorporated with a novel segmentation approach: Assessments of quantitative precision and the lower limit of normal MBF and MFR in patients
Liu H, Thorn S, Wu J, Fazzone-Chettiar R, Sandoval V, Miller EJ, Sinusas AJ, Liu YH. Quantification of myocardial blood flow (MBF) and reserve (MFR) incorporated with a novel segmentation approach: Assessments of quantitative precision and the lower limit of normal MBF and MFR in patients. Journal Of Nuclear Cardiology 2020, 28: 1236-1248. PMID: 32715416, DOI: 10.1007/s12350-020-02278-y.Peer-Reviewed Original Research
2019
A robust segmentation method with triple‐factor non‐negative matrix factorization for myocardial blood flow quantification from dynamic 82Rb positron emission tomography
Liu H, Wu J, Sun J, Wu T, Fazzone‐Chettiar R, Thorn S, Sinusas AJ, Liu Y. A robust segmentation method with triple‐factor non‐negative matrix factorization for myocardial blood flow quantification from dynamic 82Rb positron emission tomography. Medical Physics 2019, 46: 5002-5013. PMID: 31444909, DOI: 10.1002/mp.13783.Peer-Reviewed Original Research
2016
Editorial in response to: PET/CT evaluation of 18F-FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease: Independent predictor of atherosclerotic lesion formation? Is there prognostic value in evaluation of 18F-FDG uptake in the pericoronary adipose tissue?
Thorn SL, Sinusas AJ. Editorial in response to: PET/CT evaluation of 18F-FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease: Independent predictor of atherosclerotic lesion formation? Is there prognostic value in evaluation of 18F-FDG uptake in the pericoronary adipose tissue? Journal Of Nuclear Cardiology 2016, 24: 1085-1088. PMID: 26976143, DOI: 10.1007/s12350-016-0458-7.Peer-Reviewed Original Research
2015
PET imaging of a collagen matrix reveals its effective injection and targeted retention in a mouse model of myocardial infarction
Ahmadi A, Thorn SL, Alarcon EI, Kordos M, Padavan DT, Hadizad T, Cron GO, Beanlands RS, DaSilva JN, Ruel M, deKemp RA, Suuronen EJ. PET imaging of a collagen matrix reveals its effective injection and targeted retention in a mouse model of myocardial infarction. Biomaterials 2015, 49: 18-26. PMID: 25725551, DOI: 10.1016/j.biomaterials.2015.01.016.Peer-Reviewed Original ResearchConceptsMyocardial infarctionPositron emission tomographyPET imagingMouse modelNon-invasive PET imagingCardiac regeneration therapyIschemic territoryPET resultsInfarcted myocardiumEmission tomographyCollagen matrixMyocardial injectionEarly retentionPromising modalityRegeneration therapyInfarctionLabeling efficiencyMyocardiumFluorescence imagingImagingBiodistributionInjectionQdot labelingEx
2014
Reply: Noninvasive Measurement of Mouse Myocardial Glucose Uptake with 18F-FDG
Thorn SL, deKemp R, Dumouchel T, Klein R, Renaud JN, Wells RG, Gollob M, Beanlands RS, DaSilva JN. Reply: Noninvasive Measurement of Mouse Myocardial Glucose Uptake with 18F-FDG. Journal Of Nuclear Medicine 2014, 55: 866-867. PMID: 24652829, DOI: 10.2967/jnumed.114.138214.Peer-Reviewed Original ResearchAnimalsDiabetes Mellitus, Type 1Fluorodeoxyglucose F18HeartMaleMyocardiumPositron-Emission Tomography
2013
Repeatable Noninvasive Measurement of Mouse Myocardial Glucose Uptake with 18F-FDG: Evaluation of Tracer Kinetics in a Type 1 Diabetes Model
Thorn SL, deKemp RA, Dumouchel T, Klein R, Renaud JM, Wells RG, Gollob MH, Beanlands RS, DaSilva JN. Repeatable Noninvasive Measurement of Mouse Myocardial Glucose Uptake with 18F-FDG: Evaluation of Tracer Kinetics in a Type 1 Diabetes Model. Journal Of Nuclear Medicine 2013, 54: 1637-1644. PMID: 23940301, DOI: 10.2967/jnumed.112.110114.Peer-Reviewed Original ResearchConceptsMyocardial glucose uptakeImage-derived blood input functionAcute insulin treatmentInsulin treatmentBlood activityType 1 diabetic miceType 1 diabetic mouse modelML/min/Glucose uptakeVena cava diameterMyocardial glucose uptake ratesDiabetic mouse modelType 1 diabetesStandardized uptake valueTest-retest repeatabilityAcute insulin stimulationDiabetic miceCoefficient of repeatabilityFDG-PETBland-Altman analysisMyocardial glucoseContrast CTBaseline scanMouse modelTime-activity curves
2012
Uniformity and repeatability of normal resting myocardial blood flow in rats using [13N]-ammonia and small animal PET
Lamoureux M, Thorn S, Dumouchel T, Renaud JM, Klein R, Mason S, Lortie M, DaSilva JN, Beanlands RS, deKemp RA. Uniformity and repeatability of normal resting myocardial blood flow in rats using [13N]-ammonia and small animal PET. Nuclear Medicine Communications 2012, 33: 917-925. PMID: 22692581, DOI: 10.1097/mnm.0b013e328355d8bc.Peer-Reviewed Original Research18F-FDG Cell Labeling May Underestimate Transplanted Cell Homing: More Accurate, Efficient, and Stable Cell Labeling with Hexadecyl-4-[18F]Fluorobenzoate for in Vivo Tracking of Transplanted Human Progenitor Cells by Positron Emission Tomography
Zhang Y, Dasilva JN, Hadizad T, Thorn S, Kuraitis D, Renaud JM, Ahmadi A, Kordos M, Dekemp RA, Beanlands RS, Suuronen EJ, Ruel M. 18F-FDG Cell Labeling May Underestimate Transplanted Cell Homing: More Accurate, Efficient, and Stable Cell Labeling with Hexadecyl-4-[18F]Fluorobenzoate for in Vivo Tracking of Transplanted Human Progenitor Cells by Positron Emission Tomography. Cell Transplantation 2012, 21: 1821-1835. PMID: 22469629, DOI: 10.3727/096368911x637416.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsFluorodeoxyglucose F18HumansMyocardial InfarctionPositron-Emission TomographyRandom AllocationRatsRats, Sprague-DawleyStem Cell TransplantationStem CellsTissue DistributionConceptsCirculating Progenitor CellsPositron emission tomographyEmission tomographyCell therapyPET imagingCell transplantation groupProgenitor cellsCoronary artery ligationRat myocardial infarction modelInfarct border zoneHeart tissue sectionsMyocardial infarction modelBorder zoneCardiac cell therapyTransplantation groupIschemic/Artery ligationH posttransplantationBest modalityHuman progenitor cellsIntramyocardial injectionH postinjectionInjection siteTissue biodistributionInfarction modelA three-dimensional model-based partial volume correction strategy for gated cardiac mouse PET imaging
Dumouchel T, Thorn S, Kordos M, DaSilva J, Beanlands RS, deKemp RA. A three-dimensional model-based partial volume correction strategy for gated cardiac mouse PET imaging. Physics In Medicine And Biology 2012, 57: 4309-4334. PMID: 22705820, DOI: 10.1088/0031-9155/57/13/4309.Peer-Reviewed Original Research
2011
Reduced CGP12177 binding to cardiac β-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats
Thackeray JT, Parsa-Nezhad M, Kenk M, Thorn SL, Kolajova M, Beanlands RS, DaSilva JN. Reduced CGP12177 binding to cardiac β-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats. Nuclear Medicine And Biology 2011, 38: 1059-1066. PMID: 21831645, DOI: 10.1016/j.nucmedbio.2011.04.002.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic beta-AntagonistsAnimalsBiomarkersBlotting, WesternDiabetes Mellitus, ExperimentalDiet, High-FatGene Expression RegulationHyperglycemiaMaleMyocardiumPositron-Emission TomographyPropanolaminesProtein BindingRatsRats, Sprague-DawleyReceptors, Adrenergic, beta-1Receptors, Adrenergic, beta-2Substrate SpecificityConceptsAbnormal sympathetic nervous systemΒ-AR expressionSympathetic nervous systemDiabetic rat heartsSingle intraperitoneal injectionVehicle-treated controlsInfusion of isoproterenolCardiac β-adrenoceptorsΒ-AR subtypesΒ-AR antagonistsSpecific bindingHalf of ratsNormal Sprague-DawleyΒ-AR stimulationPositron emission tomographyΒ-adrenoceptor signalingCardiac bindingAR expressionCardiac dysfunctionDiabetic ratsInsulin resistanceSustained hyperglycemiaIntraperitoneal injectionΒ-adrenoceptorsDiet feedingAnalysis of (R)- and (S)-[11C]rolipram Kinetics in Canine Myocardium for the Evaluation of Phosphodiesterase-4 with PET
Lortie M, DaSilva JN, Kenk M, Thorn S, Davis D, Birnie D, Beanlands RS, deKemp RA. Analysis of (R)- and (S)-[11C]rolipram Kinetics in Canine Myocardium for the Evaluation of Phosphodiesterase-4 with PET. Molecular Imaging And Biology 2011, 14: 225-236. PMID: 21424298, DOI: 10.1007/s11307-011-0482-6.Peer-Reviewed Original Research
2010
Kinetic model‐based factor analysis of dynamic sequences for 82‐rubidium cardiac positron emission tomography
Klein R, Beanlands RS, Wassenaar RW, Thorn SL, Lamoureux M, DaSilva JN, Adler A, deKemp RA. Kinetic model‐based factor analysis of dynamic sequences for 82‐rubidium cardiac positron emission tomography. Medical Physics 2010, 37: 3995-4010. PMID: 20879561, DOI: 10.1118/1.3438474.Peer-Reviewed Original Research
2008
Collagen-Based Matrices Improve the Delivery of Transplanted Circulating Progenitor Cells
Zhang Y, Thorn S, DaSilva JN, Lamoureux M, deKemp RA, Beanlands RS, Ruel M, Suuronen EJ. Collagen-Based Matrices Improve the Delivery of Transplanted Circulating Progenitor Cells. Circulation Cardiovascular Imaging 2008, 1: 197-204. PMID: 19808543, DOI: 10.1161/circimaging.108.781120.Peer-Reviewed Original ResearchConceptsPositron emission tomographyIschemic hind limbIschemic hind limb musclesCirculating Progenitor CellsHind limbProgenitor cellsRats 2 weeksFemoral artery ligationNonspecific tissueHind limb musclesMechanism of actionEarly posttransplantationCollagen matrixSmall animal positron emission tomographyArtery ligationMinutes postinjectionProgenitor cell retentionAnimal positron emission tomographyLimb musclesCell therapyHuman CPCsTarget tissuesPosttransplantationTomographyFDG
2005
Application of cardiac molecular imaging using positron emission tomography in evaluation of drug and therapeutics for cardiovascular disorders.
Yoshinaga K, Chow BJ, dekemp RA, Thorn S, Ruddy TD, Davies RA, DaSilva JN, Beanlands R. Application of cardiac molecular imaging using positron emission tomography in evaluation of drug and therapeutics for cardiovascular disorders. Current Pharmaceutical Design 2005, 11: 903-32. PMID: 15777243, DOI: 10.2174/1381612053381800.Peer-Reviewed Original ResearchConceptsVivo pharmacokinetic studyDrug deliveryMolecular probesCardiovascular diseaseEffect of therapyAccuracy of PETPET/CTNon-invasive imaging modalityEvaluation of drugsMolecular imagingPositron emission tomography (PET) imagingEmission Tomography ImagingPositron emission tomographyPotential of PETNon-invasive modalityMechanism of actionPharmacokinetic studyCardiac molecular imagingEarly drug developmentAdvantages of PETDrug therapyDisease progressionSerial evaluationDrug treatmentReceptor levels