2022
Co-attention spatial transformer network for unsupervised motion tracking and cardiac strain analysis in 3D echocardiography
Ahn S, Ta K, Thorn S, Onofrey J, Melvinsdottir I, Lee S, Langdon J, Sinusas A, Duncan J. Co-attention spatial transformer network for unsupervised motion tracking and cardiac strain analysis in 3D echocardiography. Medical Image Analysis 2022, 84: 102711. PMID: 36525845, PMCID: PMC9812938, DOI: 10.1016/j.media.2022.102711.Peer-Reviewed Original ResearchConceptsSpatial transformer networkMotion trackingNoisy displacement fieldReliable motion estimationMotion tracking methodCardiac strain analysisTransformer networkDisplacement fieldDisplacement pathsMotion fieldTracking methodMotion estimationExperimental resultsStrain analysisSuperior performanceTemporal constraintsCardiac motionTrackingRegularization functionDependent featuresEchocardiography imagesNetworkPrior assumptionsField
2021
Multi-frame Attention Network for Left Ventricle Segmentation in 3D Echocardiography
Ahn SS, Ta K, Thorn S, Langdon J, Sinusas AJ, Duncan JS. Multi-frame Attention Network for Left Ventricle Segmentation in 3D Echocardiography. Lecture Notes In Computer Science 2021, 12901: 348-357. PMID: 34729554, PMCID: PMC8560213, DOI: 10.1007/978-3-030-87193-2_33.Peer-Reviewed Original ResearchPerformance of segmentationLeft ventricle segmentationVentricle segmentationMedical image segmentation modelsSpatiotemporal featuresAttention networkImage segmentation modelSequence of imagesAttention mechanismSegmentation modelTedious taskTarget imageSegmentationEchocardiography imagesExperimental resultsImagesNetwork