2022
Quantitative tissue analysis and role of myeloid cells in non-small cell lung cancer
Henick BS, Villarroel-Espindola F, Datar I, Sanmamed MF, Yu J, Desai S, Li A, Aguirre-Ducler A, Syrigos K, Rimm DL, Chen L, Herbst RS, Schalper KA. Quantitative tissue analysis and role of myeloid cells in non-small cell lung cancer. Journal For ImmunoTherapy Of Cancer 2022, 10: e005025. PMID: 35793873, PMCID: PMC9260844, DOI: 10.1136/jitc-2022-005025.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerSquamous cell carcinomaHuman non-small cell lung cancerMyeloid cell subsetsCell lung cancerHLA-DRLung adenocarcinomaMyeloid cellsCell subsetsLung cancerLung tissueQuantitative immunofluorescenceNon-tumor lung tissuesIndependent NSCLC cohortsLevels of CD68Multiplexed quantitative immunofluorescenceProinflammatory myeloid cellsHLA-DR expressionM1-like macrophagesImmature myeloid cell populationMyeloid cell populationsKRAS mutant tumorsNormal lung tissuesTumor epithelial cellsNon-tumor lungRASGRF1 Fusions Activate Oncogenic RAS Signaling and Confer Sensitivity to MEK Inhibition.
Hunihan L, Zhao D, Lazowski H, Li M, Qian Y, Abriola L, Surovtseva YV, Muthusamy V, Tanoue LT, Rothberg BE, Schalper KA, Herbst RS, Wilson FH. RASGRF1 Fusions Activate Oncogenic RAS Signaling and Confer Sensitivity to MEK Inhibition. Clinical Cancer Research 2022, 28: 3091-3103. PMID: 35247929, PMCID: PMC9288503, DOI: 10.1158/1078-0432.ccr-21-4291.Peer-Reviewed Original ResearchConceptsLung adenocarcinomaSmoking historyPack-year smoking historyMinimal smoking historySubset of patientsPancreatic ductal adenocarcinoma cell linesPotential treatment strategyTight junction protein occludinJunction protein occludinWhole-exome sequencingAdenocarcinoma cell lineAdvanced malignanciesCancer Genome AtlasRaf-MEKAdvanced tumorsMultiple malignanciesTreatment strategiesKRAS mutationsTherapeutic strategiesTherapeutic targetOncogenic RAS SignalingRelated commentaryOncogenic driversMEK inhibitionOncogenic alterations
2018
Concomitant targeting of the mTOR/MAPK pathways: novel therapeutic strategy in subsets of RICTOR/KRAS-altered non-small cell lung cancer
Ruder D, Papadimitrakopoulou V, Shien K, Behrens C, Kalhor N, Chen H, Shen L, Lee JJ, Hong WK, Tang X, Girard L, Minna JD, Diao L, Wang J, Mino B, Villalobos P, Rodriguez-Canales J, Hanson NE, Sun J, Miller V, Greenbowe J, Frampton G, Herbst RS, Baladandayuthapani V, Wistuba II, Izzo JG. Concomitant targeting of the mTOR/MAPK pathways: novel therapeutic strategy in subsets of RICTOR/KRAS-altered non-small cell lung cancer. Oncotarget 2018, 9: 33995-34008. PMID: 30338041, PMCID: PMC6188056, DOI: 10.18632/oncotarget.26129.Peer-Reviewed Original ResearchLung cancerAdvanced non-small cell lung cancer (NSCLC) patientsNon-small cell lung cancer patientsNon-small cell lung cancerCell lung cancer patientsSubset of NSCLCWorse overall survivalCell lung cancerLung cancer patientsAnti-tumor effectsNovel therapeutic strategiesNSCLC cell linesTherapeutic paradigm shiftMAPK pathwayUnique therapeutic vulnerabilitiesOverall survivalCancer patientsClinical trialsLung adenocarcinomaKRAS/Therapeutic strategiesPharmacologic inhibitionTherapeutic vulnerabilitiesTherapeutic opportunitiesConcomitant targetingWhole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up
Kadara H, Choi M, Zhang J, Parra ER, Rodriguez-Canales J, Gaffney SG, Zhao Z, Behrens C, Fujimoto J, Chow C, Yoo Y, Kalhor N, Moran C, Rimm D, Swisher S, Gibbons DL, Heymach J, Kaftan E, Townsend JP, Lynch TJ, Schlessinger J, Lee J, Lifton RP, Wistuba II, Herbst RS. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up. Annals Of Oncology 2018, 29: 1072. PMID: 29688333, PMCID: PMC6887935, DOI: 10.1093/annonc/mdx062.Peer-Reviewed Original Research
2017
JAK1/STAT3 Activation through a Proinflammatory Cytokine Pathway Leads to Resistance to Molecularly Targeted Therapy in Non–Small Cell Lung Cancer
Shien K, Papadimitrakopoulou VA, Ruder D, Behrens C, Shen L, Kalhor N, Song J, Lee JJ, Wang J, Tang X, Herbst RS, Toyooka S, Girard L, Minna JD, Kurie JM, Wistuba II, Izzo JG. JAK1/STAT3 Activation through a Proinflammatory Cytokine Pathway Leads to Resistance to Molecularly Targeted Therapy in Non–Small Cell Lung Cancer. Molecular Cancer Therapeutics 2017, 16: 2234-2245. PMID: 28729401, PMCID: PMC5628136, DOI: 10.1158/1535-7163.mct-17-0148.Peer-Reviewed Original ResearchMeSH KeywordsAgedApoptosisCancer-Associated FibroblastsCarcinoma, Non-Small-Cell LungCell Line, TumorCytokinesDrug Resistance, NeoplasmEpithelial-Mesenchymal TransitionFemaleGene Expression Regulation, NeoplasticHumansInterleukin-6Janus Kinase 1MaleMiddle AgedMolecular Targeted TherapyNeoplasm StagingOncostatin MReceptors, Oncostatin MSignal TransductionSTAT3 Transcription FactorConceptsNon-small cell lung cancerCancer-associated fibroblastsNSCLC cellsOSM receptorMajority of patientsCell lung cancerProinflammatory cytokine IL6Proinflammatory cytokine pathwaysSignificant therapeutic advancesClinical NSCLC samplesMol Cancer TherSTAT3-dependent mannerOSMR expressionDrug-induced apoptosisWorse prognosisPrognostic significanceLung cancerTherapeutic advancesCytokines IL6Molecule expressionNSCLC samplesCytokine pathwaysLung adenocarcinomaTargeted drugsParacrine mechanismsExtracellular Matrix Receptor Expression in Subtypes of Lung Adenocarcinoma Potentiates Outgrowth of Micrometastases
Stevens LE, Cheung WKC, Adua SJ, Arnal-Estapé A, Zhao M, Liu Z, Brewer K, Herbst RS, Nguyen DX. Extracellular Matrix Receptor Expression in Subtypes of Lung Adenocarcinoma Potentiates Outgrowth of Micrometastases. Cancer Research 2017, 77: 1905-1917. PMID: 28196904, PMCID: PMC5468792, DOI: 10.1158/0008-5472.can-16-1978.Peer-Reviewed Original ResearchConceptsBrain metastatic nicheRisk of relapseDistant metastasisPoor prognosisLUAD subtypesLung tumorsLung adenocarcinomaLUAD cellsMetastatic outgrowthMetastatic nicheCancer ResCancer cellsECM-mediated signalingExtracellular matrix moleculesCell survivalMolecular signaturesDifferential expressionHMMRMatrix moleculesImportant mechanismCellsRelapseAdenocarcinomaPrognosisMetastasisWhole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up
Kadara H, Choi M, Zhang J, Parra ER, Rodriguez-Canales J, Gaffney SG, Zhao Z, Behrens C, Fujimoto J, Chow C, Yoo Y, Kalhor N, Moran C, Rimm D, Swisher S, Gibbons DL, Heymach J, Kaftan E, Townsend JP, Lynch TJ, Schlessinger J, Lee J, Lifton RP, Wistuba II, Herbst RS. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up. Annals Of Oncology 2017, 28: 75-82. PMID: 27687306, PMCID: PMC5982809, DOI: 10.1093/annonc/mdw436.Peer-Reviewed Original ResearchConceptsRecurrence-free survivalPoor recurrence-free survivalWhole-exome sequencingEarly-stage lung adenocarcinomaMutant lung adenocarcinomaLung adenocarcinomaImmune markersClinical outcomesExact testNatural killer cell infiltrationProportional hazards regression modelsGranzyme B levelsImmune marker analysisImmune profiling analysisPD-L1 expressionImmune-based therapiesTumoral PD-L1Hazards regression modelsKRAS mutant tumorsNormal lung tissuesMajority of deathsFisher's exact testHigh mutation burdenAnalysis of immunophenotypeRelevant molecular markers
2015
Co-occurring Genomic Alterations Define Major Subsets of KRAS-Mutant Lung Adenocarcinoma with Distinct Biology, Immune Profiles, and Therapeutic Vulnerabilities
Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J, Behrens C, Kadara H, Parra ER, Canales JR, Zhang J, Giri U, Gudikote J, Cortez MA, Yang C, Fan Y, Peyton M, Girard L, Coombes KR, Toniatti C, Heffernan TP, Choi M, Frampton GM, Miller V, Weinstein JN, Herbst RS, Wong KK, Zhang J, Sharma P, Mills GB, Hong WK, Minna JD, Allison JP, Futreal A, Wang J, Wistuba II, Heymach JV. Co-occurring Genomic Alterations Define Major Subsets of KRAS-Mutant Lung Adenocarcinoma with Distinct Biology, Immune Profiles, and Therapeutic Vulnerabilities. Cancer Discovery 2015, 5: 860-877. PMID: 26069186, PMCID: PMC4527963, DOI: 10.1158/2159-8290.cd-14-1236.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdenocarcinoma of LungAMP-Activated Protein Kinase KinasesAMP-Activated Protein KinasesCell Line, TumorCluster AnalysisDNA-Binding ProteinsGene ExpressionGene Expression ProfilingGenetic VariationGenomicsHumansInflammationLung NeoplasmsMutationOxidative StressPrognosisProtein Serine-Threonine KinasesRas ProteinsSignal TransductionTranscription FactorsTumor Suppressor ProteinsConceptsKRAS-mutant lung adenocarcinomaCo-occurring genomic alterationsLung adenocarcinomaDistinct biologyTherapeutic vulnerabilitiesSTK11/LKB1Hsp90 inhibitor therapyRelapse-free survivalDrug sensitivity patternsGenomic alterationsCDKN2A/BKC tumorsInflammatory markersMucinous histologyImmune markersImmune profilePD-L1AdenocarcinomaSensitivity patternMajor subsetNKX2-1 transcription factorLow expressionTumorsGenetic alterationsEffector moleculesA Novel Small-Molecule Inhibitor Targeting CREB-CBP Complex Possesses Anti-Cancer Effects along with Cell Cycle Regulation, Autophagy Suppression and Endoplasmic Reticulum Stress
Lee JW, Park HS, Park SA, Ryu SH, Meng W, Jürgensmeier JM, Kurie JM, Hong WK, Boyer JL, Herbst RS, Koo JS. A Novel Small-Molecule Inhibitor Targeting CREB-CBP Complex Possesses Anti-Cancer Effects along with Cell Cycle Regulation, Autophagy Suppression and Endoplasmic Reticulum Stress. PLOS ONE 2015, 10: e0122628. PMID: 25897662, PMCID: PMC4405579, DOI: 10.1371/journal.pone.0122628.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdenocarcinoma of LungAnilidesAntineoplastic AgentsApoptosis Regulatory ProteinsAutophagyAutophagy-Related Protein 7Bcl-2-Like Protein 11Cell Cycle CheckpointsCell Line, TumorCyclic AMP Response Element-Binding ProteinDrug Screening Assays, AntitumorEndoplasmic Reticulum StressHumansInhibitory Concentration 50Kaplan-Meier EstimateLung NeoplasmsMembrane ProteinsMolecular Docking SimulationOrganophosphatesPeptide FragmentsProportional Hazards ModelsProtein BindingProto-Oncogene ProteinsSialoglycoproteinsUbiquitin-Activating EnzymesConceptsLung cancerHuman lung cancer cell linesEndoplasmic reticulum (ER) stress markersLung cancer cell linesNovel therapeutic strategiesPotential therapeutic targetAnti-cancer effectsNovel small molecule inhibitorPotential therapeutic agentCyclic AMP response element binding proteinAccumulation of p62Response element-binding proteinEndoplasmic reticulum stressCancer cell linesCancer deathCommon subtypeCell cycle arrestLung adenocarcinomaNew therapiesTherapeutic strategiesSmall molecule inhibitorsTherapeutic targetElement-binding proteinStress markersTherapeutic agents
2013
Identification of EGFR mutation, KRAS mutation, and ALK gene rearrangement in cytological specimens of primary and metastatic lung adenocarcinoma
Cai G, Wong R, Chhieng D, Levy GH, Gettinger SN, Herbst RS, Puchalski JT, Homer RJ, Hui P. Identification of EGFR mutation, KRAS mutation, and ALK gene rearrangement in cytological specimens of primary and metastatic lung adenocarcinoma. Cancer Cytopathology 2013, 121: 500-507. PMID: 23495083, DOI: 10.1002/cncy.21288.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdultAgedAged, 80 and overAnaplastic Lymphoma KinaseBiomarkers, TumorBone NeoplasmsCytodiagnosisDNA, NeoplasmErbB ReceptorsFeasibility StudiesFemaleGene RearrangementHumansIn Situ Hybridization, FluorescenceLiver NeoplasmsLung NeoplasmsMaleMiddle AgedMutationNeoplasm Recurrence, LocalPrognosisProto-Oncogene ProteinsProto-Oncogene Proteins p21(ras)Ras ProteinsReal-Time Polymerase Chain ReactionReceptor Protein-Tyrosine KinasesSoft Tissue NeoplasmsYoung AdultConceptsALK gene rearrangementMetastatic lung adenocarcinomaEGFR mutationsKRAS mutationsMetastatic tumorsEpidermal growth factor receptorLung adenocarcinomaCytological specimensGene rearrangementsMolecular testsMolecular alterationsKirsten rat sarcoma viral oncogene homolog (KRAS) mutationsALK gene rearrangement analysisAnaplastic lymphoma kinase (ALK) gene rearrangementEGFR T790M mutationRat sarcoma viral oncogene homolog mutationsCases of lungT790M mutationImportant therapeutic implicationsFine needle aspiratesGene rearrangement analysisCell block materialGrowth factor receptorRecurrent lungRecurrent adenocarcinomaCXCR2 Expression in Tumor Cells Is a Poor Prognostic Factor and Promotes Invasion and Metastasis in Lung Adenocarcinoma
Saintigny P, Massarelli E, Lin S, Ahn YH, Chen Y, Goswami S, Erez B, O'Reilly MS, Liu D, Lee JJ, Zhang L, Ping Y, Behrens C, Soto L, Heymach JV, Kim ES, Herbst RS, Lippman SM, Wistuba II, Hong WK, Kurie JM, Koo JS. CXCR2 Expression in Tumor Cells Is a Poor Prognostic Factor and Promotes Invasion and Metastasis in Lung Adenocarcinoma. Cancer Research 2013, 73: 571-582. PMID: 23204236, PMCID: PMC3548940, DOI: 10.1158/0008-5472.can-12-0263.Peer-Reviewed Original ResearchConceptsGene expression profilesNon-small cell lung cancerKnockdown clonesNSCLC cell linesHuman NSCLC cell linesExpression profilesCell linesStable knockdown clonesLung adenocarcinomaLung adenocarcinoma cell linesTumor cellsRAS pathway activationCXCR2 expressionPoor prognosisLung cancer cellsOrthotopic syngeneic mouse modelAdenocarcinoma cell linePromotes InvasionExpression of CXCL5Role of CXCR2Poor prognostic factorCell lung cancerPromoter methylationSyngeneic mouse modelProtein expression
2011
Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor–resistant human lung adenocarcinoma
Cascone T, Herynk MH, Xu L, Du Z, Kadara H, Nilsson MB, Oborn CJ, Park YY, Erez B, Jacoby JJ, Lee JS, Lin HY, Ciardiello F, Herbst RS, Langley RR, Heymach JV. Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor–resistant human lung adenocarcinoma. Journal Of Clinical Investigation 2011, 121: 1313-1328. PMID: 21436589, PMCID: PMC3070607, DOI: 10.1172/jci42405.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAngiogenesis InhibitorsAnimalsAntibodies, MonoclonalAntibodies, Monoclonal, HumanizedApoptosisBevacizumabCell Line, TumorDrug Resistance, NeoplasmErbB ReceptorsGene Expression ProfilingHumansLung NeoplasmsMaleMiceMice, NudeNeovascularization, PathologicRNA, MessengerRNA, NeoplasmStromal CellsUp-RegulationVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-2Xenograft Model Antitumor AssaysConceptsMouse xenograft modelHuman lung adenocarcinomaTumor cellsPrimary resistanceLung adenocarcinomaXenograft modelFGFR pathwayProgression-free survivalVEGF inhibitor bevacizumabEndothelium of tumorsInhibitors of angiogenesisCombination regimensTreatment of cancerVEGF inhibitorsPericyte coverageAntiangiogenic therapyVascular remodelingAngiogenesis inhibitorsTherapeutic efficacyTumor growthStromal pathwaysClinical useEGFRAcquired ResistanceEGFR pathway
2010
A Multicenter, Phase 2 Study of Vascular Endothelial Growth Factor Trap (Aflibercept) in Platinum- and Erlotinib-Resistant Adenocarcinoma of the Lung
Leighl NB, Raez LE, Besse B, Rosen PJ, Barlesi F, Massarelli E, Gabrail N, Hart LL, Albain KS, Berkowitz L, Melnyk O, Shepherd FA, Sternas L, Ackerman J, Shun Z, Miller VA, Herbst RS. A Multicenter, Phase 2 Study of Vascular Endothelial Growth Factor Trap (Aflibercept) in Platinum- and Erlotinib-Resistant Adenocarcinoma of the Lung. Journal Of Thoracic Oncology 2010, 5: 1054-1059. PMID: 20593550, DOI: 10.1097/jto.0b013e3181e2f7fb.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdultAgedAntineoplastic Combined Chemotherapy ProtocolsCarcinoma, Non-Small-Cell LungDrug Resistance, NeoplasmErlotinib HydrochlorideFemaleHumansLung NeoplasmsMaleMiddle AgedOrganoplatinum CompoundsQuinazolinesReceptors, Vascular Endothelial Growth FactorRecombinant Fusion ProteinsSalvage TherapySurvival RateTreatment OutcomeConceptsProgression-free survivalLung adenocarcinomaLung cancerResponse rateCommon grade 3/4 toxicitiesMedian progression-free survivalVascular endothelial growth factor trapGrade 5 hemoptysisReversible posterior leukoencephalopathyGrade 3/4 toxicitiesPrimary end pointPhase 2 studyPhase I trialSingle-agent activityDuration of responseOverall response ratePlacental growth factorCardiac ejection fractionProgression of diseaseActivity of VEGFIntravenous afliberceptPosterior leukoencephalopathyIntolerable toxicityOverall survivalCerebral ischemiaTreatment with HIF-1α Antagonist PX-478 Inhibits Progression and Spread of Orthotopic Human Small Cell Lung Cancer and Lung Adenocarcinoma in Mice
Jacoby JJ, Erez B, Korshunova MV, Williams RR, Furutani K, Takahashi O, Kirkpatrick L, Lippman SM, Powis G, O'Reilly MS, Herbst RS. Treatment with HIF-1α Antagonist PX-478 Inhibits Progression and Spread of Orthotopic Human Small Cell Lung Cancer and Lung Adenocarcinoma in Mice. Journal Of Thoracic Oncology 2010, 5: 940-949. PMID: 20512076, PMCID: PMC3782111, DOI: 10.1097/jto.0b013e3181dc211f.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAnimalsApoptosisBlotting, WesternCarcinoma, Non-Small-Cell LungDisease ProgressionHumansHypoxia-Inducible Factor 1, alpha SubunitImmunoenzyme TechniquesLung NeoplasmsLymphatic MetastasisMaleMiceMice, NudeMustard CompoundsPhenylpropionatesSmall Cell Lung CarcinomaSurvival RateTreatment OutcomeTumor Cells, CulturedConceptsLung tumor volumePX-478Tumor volumeLung cancerNSCLC modelsLung adenocarcinomaNon-small cell lung cancer xenograftsSmall cell lung cancer modelCell lung cancer xenograftsHuman small cell lung cancerSmall cell lung cancerCell lung cancer modelsPhase I clinical trialPX-478 treatmentAntitumor activityDaily oral treatmentMedian survival durationVehicle-treated groupCell lung cancerLung cancer xenograftsLung cancer patientsLung adenocarcinoma cell modelsLung cancer cell linesLung cancer modelOrthotopic mouse model
2005
High Expression of ErbB Family Members and Their Ligands in Lung Adenocarcinomas That Are Sensitive to Inhibition of Epidermal Growth Factor Receptor
Fujimoto N, Wislez M, Zhang J, Iwanaga K, Dackor J, Hanna AE, Kalyankrishna S, Cody DD, Price RE, Sato M, Shay JW, Minna JD, Peyton M, Tang X, Massarelli E, Herbst R, Threadgill DW, Wistuba II, Kurie JM. High Expression of ErbB Family Members and Their Ligands in Lung Adenocarcinomas That Are Sensitive to Inhibition of Epidermal Growth Factor Receptor. Cancer Research 2005, 65: 11478-11485. PMID: 16357156, DOI: 10.1158/0008-5472.can-05-1977.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdenocarcinoma, Bronchiolo-AlveolarAnimalsAntineoplastic AgentsCarcinoma, Non-Small-Cell LungDrug Resistance, NeoplasmErbB ReceptorsGefitinibGenes, rasHumansLigandsLung NeoplasmsMiceMice, KnockoutMutationNeoplasms, Glandular and EpithelialPhosphorylationProto-Oncogene Proteins c-aktQuinazolinesReceptor, ErbB-2Receptor, ErbB-3Tumor Cells, CulturedTyrosineConceptsEpidermal growth factor receptorLung adenocarcinoma patientsLung adenocarcinoma cellsErbB family membersEGFR inhibitionGrowth factor receptorAdenocarcinoma patientsLung adenocarcinomaTumor biopsiesAdenocarcinoma cellsEpithelial neoplastic lesionsHigh expressionFactor receptorGenetic mutationsHuman lung adenocarcinoma cell lineLung adenocarcinoma cell linesAdenocarcinoma cell lineFamily membersNeoplastic lesionsOncogenic KRASErbB ligandsReceptorsAdenocarcinomaPatientsBiopsy