2022
A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness
Zhang H, Zhu Y, Liu Z, Peng Y, Peng W, Tong L, Wang J, Liu Q, Wang P, Cheng G. A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness. Cell 2022, 185: 2510-2522.e16. PMID: 35777355, DOI: 10.1016/j.cell.2022.05.016.Peer-Reviewed Original ResearchSkin microbiotaMosquito-transmitted flavivirusDengue patientsFlavivirus infectionFlavivirus life cycleDietary administrationHealthy peopleCommensal bacteriaZika virusHost skinMosquito attractivenessArboviral transmissionRELMαAedes mosquitoesMicrobiotaMosquito olfactionInfected hostAntimicrobial proteinsHematophagous arthropodsHost-seeking activityMosquitoesIsotretinoinPatientsInfectionMice
2021
A human-blood-derived microRNA facilitates flavivirus infection in fed mosquitoes
Zhu Y, Zhang C, Zhang L, Yang Y, Yu X, Wang J, Liu Q, Wang P, Cheng G. A human-blood-derived microRNA facilitates flavivirus infection in fed mosquitoes. Cell Reports 2021, 37: 110091. PMID: 34910910, DOI: 10.1016/j.celrep.2021.110091.Peer-Reviewed Original ResearchGlucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH
Wang M, An Y, Gao L, Dong S, Zhou X, Feng Y, Wang P, Dimopoulos G, Tang H, Wang J. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH. Cell Reports 2021, 35: 108992. PMID: 33882310, PMCID: PMC8116483, DOI: 10.1016/j.celrep.2021.108992.Peer-Reviewed Original ResearchConceptsPlasmodium infectionGlucose metabolismMalaria parasitesCommensal bacteriumMosquito midgutPlasmodium berghei infectionGut commensal bacteriumBerghei infectionMosquito-microbiota interactionsDietary glucoseInfectionMetabolome changesVector competencePlasmodium gametogenesisVector competencyGlucoseImportant determinantPlasmodiumProliferationMetabolismMosquitoesParasitesAsaia bogorensis
2020
Macrophage scavenger receptor 1 controls Chikungunya virus infection through autophagy in mice
Yang L, Geng T, Yang G, Ma J, Wang L, Ketkar H, Yang D, Lin T, Hwang J, Zhu S, Wang Y, Dai J, You F, Cheng G, Vella AT, Flavell RA, Fikrig E, Wang P. Macrophage scavenger receptor 1 controls Chikungunya virus infection through autophagy in mice. Communications Biology 2020, 3: 556. PMID: 33033362, PMCID: PMC7545163, DOI: 10.1038/s42003-020-01285-6.Peer-Reviewed Original ResearchConceptsMacrophage scavenger receptor 1Scavenger receptor 1Chikungunya virusReceptor 1Antiviral roleType I IFN responseChikungunya virus infectionLow-density lipoproteinImportant antiviral roleI IFN responseMarkers of autophagyCHIKV infectionViral loadArthritogenic alphavirusesVirus infectionCHIKV replicationATG5-ATG12Antiviral actionKnockout miceMSR1 expressionIFN responseInfectionMiceNsp1 proteinAutophagic functionA mosquito salivary protein promotes flavivirus transmission by activation of autophagy
Sun P, Nie K, Zhu Y, Liu Y, Wu P, Liu Z, Du S, Fan H, Chen CH, Zhang R, Wang P, Cheng G. A mosquito salivary protein promotes flavivirus transmission by activation of autophagy. Nature Communications 2020, 11: 260. PMID: 31937766, PMCID: PMC6959235, DOI: 10.1038/s41467-019-14115-z.Peer-Reviewed Original ResearchConceptsBeclin-1Viral transmissionFlavivirus transmissionMosquito salivary proteinsHost immune cellsZika virus transmissionActivation of autophagyLow viremiaProphylactic targetsMosquito salivaImmune cellsZIKV transmissionAllergen 1Infected mosquitoesViral infectionMonocyte lineageVirus transmissionMiceMosquitoesSalivary proteinsNumerous studiesViremiaInfectionFlavivirusesProtein
2019
Host serum iron modulates dengue virus acquisition by mosquitoes
Zhu Y, Tong L, Nie K, Wiwatanaratanabutr I, Sun P, Li Q, Yu X, Wu P, Wu T, Yu C, Liu Q, Bian Z, Wang P, Cheng G. Host serum iron modulates dengue virus acquisition by mosquitoes. Nature Microbiology 2019, 4: 2405-2415. PMID: 31527795, DOI: 10.1038/s41564-019-0555-x.Peer-Reviewed Original ResearchConceptsSerum ironDengue virusVirus acquisitionDengue virus infectionIron-deficient miceDengue virus prevalenceIron metabolism pathwaysViral loadIron supplementationA. aegypti mosquitoesHigh prevalenceVirus infectionArbovirus infectionHuman donorsIron deficiencyInfectionBlood componentsGut epitheliumReactive oxygen speciesSusceptibility of mosquitoesVirus prevalenceAegypti mosquitoesBlood mealHuman bloodVirusThe GRA15 protein from Toxoplasma gondii enhances host defense responses by activating the interferon stimulator STING
Wang P, Li S, Zhao Y, Zhang B, Li Y, Liu S, Du H, Cao L, Ou M, Ye X, Li P, Gao X, Wang P, Jing C, Shao F, Yang G, You F. The GRA15 protein from Toxoplasma gondii enhances host defense responses by activating the interferon stimulator STING. Journal Of Biological Chemistry 2019, 294: 16494-16508. PMID: 31416833, PMCID: PMC6851339, DOI: 10.1074/jbc.ra119.009172.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDisease Models, AnimalHEK293 CellsHumansImmunity, InnateInterferon-gammaInterleukin-12 Subunit p35Membrane ProteinsMiceMice, Inbred C57BLMice, KnockoutNucleotidyltransferasesProtein MultimerizationProtozoan ProteinsSpleenSurvival RateToxoplasmaToxoplasmosisTumor Necrosis Factor Receptor-Associated Peptides and ProteinsUbiquitinationConceptsImmune responseCyclic GMP-AMP synthaseWT miceRobust innate immune responseCGAS-deficient miceHost immune responseInnate immune responseType I IFNCGAS/STING signalingInterferon-stimulated genesGMP-AMP synthaseInflammatory cytokinesNeurotropic pathogensGRA15Mouse modelSevere symptomsI IFNLatent infectionSTING signalingHigh mortalityMiceInfectionHost defense responsesStingsHost cellsLack of efficacy of ivermectin for prevention of a lethal Zika virus infection in a murine system
Ketkar H, Yang L, Wormser GP, Wang P. Lack of efficacy of ivermectin for prevention of a lethal Zika virus infection in a murine system. Diagnostic Microbiology And Infectious Disease 2019, 95: 38-40. PMID: 31097261, PMCID: PMC6697611, DOI: 10.1016/j.diagmicrobio.2019.03.012.Peer-Reviewed Original ResearchConceptsZika virus infectionAnti-Zika virus activityVirus infectionAnimal modelsZika virusLethal Zika Virus InfectionIFNAR1 knockout miceZika virus strainLack of efficacyEffectiveness of ivermectinLethal infectionKnockout miceVirus activityAntiviral activityMurine systemVirus strainsDrug ivermectinInfectionIvermectinStudy limitationsPreventionVirusSenegal strainMiceAedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments
Du S, Liu Y, Liu J, Zhao J, Champagne C, Tong L, Zhang R, Zhang F, Qin CF, Ma P, Chen CH, Liang G, Liu Q, Shi PY, Cazelles B, Wang P, Tian H, Cheng G. Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments. Nature Communications 2019, 10: 1324. PMID: 30902991, PMCID: PMC6430813, DOI: 10.1038/s41467-019-09256-0.Peer-Reviewed Original Research
2018
A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses
Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C, Liu H, Liu Q, Zhao T, Chen X, Zhou H, Wang P, Cheng G. A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses. Cell Host & Microbe 2018, 25: 101-112.e5. PMID: 30595552, DOI: 10.1016/j.chom.2018.11.004.Peer-Reviewed Original ResearchConceptsArboviral infectionsCommensal bacteriumGut bacteriaDengue virus infectionGut commensal bacteriumCultivable gut bacteriaAedes aegypti mosquitoesVirus infectionViral disseminationAntibiotic depletionIntestinal tractOral introductionGut microbiomeGut epitheliumInfectionMembrane-bound mucinsHuman virusesAegypti mosquitoesHematophagous vectorsVector competenceArbovirusesField mosquitoesSerratia marcescensMosquitoesVirusInterferon-stimulated TRIM69 interrupts dengue virus replication by ubiquitinating viral nonstructural protein 3
Wang K, Zou C, Wang X, Huang C, Feng T, Pan W, Wu Q, Wang P, Dai J. Interferon-stimulated TRIM69 interrupts dengue virus replication by ubiquitinating viral nonstructural protein 3. PLOS Pathogens 2018, 14: e1007287. PMID: 30142214, PMCID: PMC6126873, DOI: 10.1371/journal.ppat.1007287.Peer-Reviewed Original ResearchMeSH KeywordsA549 CellsAnimalsAnophelesCells, CulturedDengue VirusGene Expression RegulationHEK293 CellsHeLa CellsHuman Umbilical Vein Endothelial CellsHumansInterferon Type IMiceProtein Processing, Post-TranslationalRNA HelicasesSerine EndopeptidasesTripartite Motif ProteinsUbiquitinationUbiquitin-Protein LigasesUp-RegulationViral Nonstructural ProteinsVirus ReplicationConceptsInterferon-stimulated genesI interferonNonstructural protein 3DENV replicationMost interferon-stimulated genesProtein 3Dengue virus infectionDengue virus replicationType I interferonViral nonstructural protein 3DENV infectionImmunocompetent miceVirus infectionViral infectionAntiviral activityVirus replicationVivo studiesInfectionTripartite motif (TRIM) proteinsTRIM family membersViral nonstructural proteinsFamily membersNonstructural proteinsTRIM69E3 ubiquitin ligase activityFoot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1
Sun P, Zhang S, Qin X, Chang X, Cui X, Li H, Zhang S, Gao H, Wang P, Zhang Z, Luo J, Li Z. Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1. Autophagy 2018, 14: 336-346. PMID: 29166823, PMCID: PMC5902195, DOI: 10.1080/15548627.2017.1405187.Peer-Reviewed Original ResearchConceptsCapsid protein VP2FMDV infectionProtein VP2Polyglutamine expansion proteinsMacroautophagy/autophagyMammalian cell linesPrecise molecular mechanismsFMDV capsid proteinsNatural host cellsInhibition of autophagyCloven-hoofed animalsAutophagy inductionMolecular mechanismsAutophagy processHost cellsAkt-mTORMouth disease virusCapsid proteinViral replicationAutophagyFMDV replicationHSPB1InfectionCell linesVP2
2017
Blood meal acquisition enhances arbovirus replication in mosquitoes through activation of the GABAergic system
Zhu Y, Zhang R, Zhang B, Zhao T, Wang P, Liang G, Cheng G. Blood meal acquisition enhances arbovirus replication in mosquitoes through activation of the GABAergic system. Nature Communications 2017, 8: 1262. PMID: 29093445, PMCID: PMC5665997, DOI: 10.1038/s41467-017-01244-6.Peer-Reviewed Original ResearchMeSH KeywordsAedesAnimalsArbovirusesBloodBunyamwera virusCulexDengue VirusEncephalitis Virus, CaliforniaEncephalitis Virus, JapaneseGABA-A Receptor AntagonistsGamma-Aminobutyric AcidHumansImmunity, InnateMosquito VectorsReceptors, GABA-ARNA, Double-StrandedSemliki forest virusSignal TransductionSindbis VirusVirus ReplicationConceptsGABAergic systemArboviral infectionsArbovirus replicationInfection of mosquitoesAntiviral innate immunityIngestion of bloodBlood protein digestionBlood mealGABA signalingBlood meal acquisitionGABAergic pathwayGABAA receptorsInnate immunityOral introductionGlutamic acidHematophagous insectsInfectionHuman virusesVirus acquisitionSpecific inhibitorGABAProtein digestionCommon mechanismHematophagous natureActivationSophoraflavenone G Restricts Dengue and Zika Virus Infection via RNA Polymerase Interference
Sze A, Olagnier D, Hadj SB, Han X, Tian XH, Xu HT, Yang L, Shi Q, Wang P, Wainberg MA, Wu JH, Lin R. Sophoraflavenone G Restricts Dengue and Zika Virus Infection via RNA Polymerase Interference. Viruses 2017, 9: 287. PMID: 28972551, PMCID: PMC5691638, DOI: 10.3390/v9100287.Peer-Reviewed Original ResearchConceptsZika virus infectionHepatitis C virusHepatitis C replicationPost-infection treatmentGlobal health concernAntiviral treatmentC virusVirus infectionVesicular stomatitis virusZika virusAntiviral compoundsHealth concernChinese medicinePolymerase inhibitionDengueStomatitis virusVirusTreatmentRNA polymerase inhibitionInfectionDiseaseFlavivirusesNlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells
Zhu S, Ding S, Wang P, Wei Z, Pan W, Palm NW, Yang Y, Yu H, Li HB, Wang G, Lei X, de Zoete MR, Zhao J, Zheng Y, Chen H, Zhao Y, Jurado KA, Feng N, Shan L, Kluger Y, Lu J, Abraham C, Fikrig E, Greenberg HB, Flavell RA. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 2017, 546: 667-670. PMID: 28636595, PMCID: PMC5787375, DOI: 10.1038/nature22967.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosis Regulatory ProteinsCARD Signaling Adaptor ProteinsCaspase 1DEAD-box RNA HelicasesEpithelial CellsFemaleImmunity, InnateInflammasomesInterleukin-18Intestinal MucosaIntestinesIntracellular Signaling Peptides and ProteinsMaleMiceMice, Inbred C57BLPhosphate-Binding ProteinsPyroptosisReceptors, G-Protein-CoupledRNA, Double-StrandedRotavirusRotavirus InfectionsAn essential role of PI3K in the control of West Nile virus infection
Wang L, Yang L, Fikrig E, Wang P. An essential role of PI3K in the control of West Nile virus infection. Scientific Reports 2017, 7: 3724. PMID: 28623344, PMCID: PMC5473900, DOI: 10.1038/s41598-017-03912-5.Peer-Reviewed Original ResearchConceptsWest Nile virus infectionPI3K inhibitorsPI3KVirus infectionImmune responseK inhibitorsType I IFN responseAntiviral immune responseI IFN responseCatalytic subunit p110δTNF-α protein productionPrimary mouse macrophagesFlaviviral infectionsAntiviral immunityIFN responseViral titersClass I PI3KAntiviral roleMRNA expressionPI3K activityIFNProtein expressionInfectionMouse macrophagesCell proliferation
2016
Glycosphingolipid GM3 is Indispensable for Dengue Virus Genome Replication
Wang K, Wang J, Sun T, Bian G, Pan W, Feng T, Wang P, Li Y, Dai J. Glycosphingolipid GM3 is Indispensable for Dengue Virus Genome Replication. International Journal Of Biological Sciences 2016, 12: 872-883. PMID: 27313500, PMCID: PMC4910605, DOI: 10.7150/ijbs.15641.Peer-Reviewed Original ResearchConceptsDENV infectionDengue virusB16 cellsDENV attachmentSynthetase inhibitorGM95 cellsPrevalent arthropodVirus infectionMouse melanoma B16 cellsMortality rateViral-host interactionsMelanoma B16 cellsMouse brainViral replicationInfectionVirus genome replicationViral diseasesGenome replicationViral genome replicationEndoplasmic reticulumGM3CellsViral replication complexInhibitorsGlycosphingolipidsExploration of West Nile Virus Infection in Mouse Models
Wang P. Exploration of West Nile Virus Infection in Mouse Models. Methods In Molecular Biology 2016, 1435: 71-81. PMID: 27188551, DOI: 10.1007/978-1-4939-3670-0_7.Peer-Reviewed Original ResearchConceptsWest Nile virusMouse modelWest Nile virus infectionExperimental mouse modelAntiviral immune responseCentral nervous systemWNV pathogenesisLeukocyte numbersVirus infectionImmune responseBlood leukocytesWNV infectionNervous systemNeurological diseasesMouse brainViral titersResidential cellsLeukocytesNile virusVirus spreadInfectionImmunopathologyPathogenesisCNSDisease
2015
Mosquito Defense Strategies against Viral Infection
Cheng G, Liu Y, Wang P, Xiao X. Mosquito Defense Strategies against Viral Infection. Trends In Parasitology 2015, 32: 177-186. PMID: 26626596, PMCID: PMC4767563, DOI: 10.1016/j.pt.2015.09.009.Peer-Reviewed Original ResearchConceptsViral infectionMosquito antiviral immunityEfficient antiviral strategiesPathological sequelaePersistent infectionAntiviral immunityArbovirus infectionViral replicationAntiviral strategiesInfectionMosquito tissuesViral diseasesGlobal healthViral propagationMosquitoesTissueNatural vectorSequelaeSpecific tissuesDiseaseImmunity
2013
UBXN1 Interferes with Rig-I-like Receptor-Mediated Antiviral Immune Response by Targeting MAVS
Wang P, Yang L, Cheng G, Yang G, Xu Z, You F, Sun Q, Lin R, Fikrig E, Sutton RE. UBXN1 Interferes with Rig-I-like Receptor-Mediated Antiviral Immune Response by Targeting MAVS. Cell Reports 2013, 3: 1057-1070. PMID: 23545497, PMCID: PMC3707122, DOI: 10.1016/j.celrep.2013.02.027.Peer-Reviewed Original ResearchConceptsAntiviral immune responseInnate immune responseImmune responseLike receptorsSystemic antiviral immune responsesVirus-induced innate immune responsesDengue virus infectionType I interferon responseI interferon responseRNA virusesVirus infectionViral infectionStrong inhibitory effectViral replicationVirus replicationInterferon responseRNA virus replicationInhibitory effectWest NileMAVSVesicular stomatitisInfectionAdaptor moleculeFamily membersReceptors