Paula Preston-Hurlburt
Research Associate ImmunobiologyCards
Contact Info
About
Titles
Research Associate Immunobiology
Departments & Organizations
Research
Research at a Glance
Yale Co-Authors
Frequent collaborators of Paula Preston-Hurlburt's published research.
Publications Timeline
A big-picture view of Paula Preston-Hurlburt's research output by year.
Songyan Deng
Kevan Herold, MD
Tian Chi, PhD, MD
James Dziura, MPH, PhD
Richard Torres, MD, MS, BS
Smita Krishnaswamy, PhD
43Publications
8,902Citations
Publications
2024
Teplizumab induces persistent changes in the antigen‐specific repertoire in individuals at‐risk for type 1 diabetes
Lledó-Delgado A, Preston-Hurlburt P, Currie S, Clark P, Linsley P, Long S, Liu C, Koroleva G, Martins A, Tsang J, Herold K. Teplizumab induces persistent changes in the antigen‐specific repertoire in individuals at‐risk for type 1 diabetes. Journal Of Clinical Investigation 2024, 134: e177492. PMID: 39137044, PMCID: PMC11405034, DOI: 10.1172/jci177492.Peer-Reviewed Original ResearchCitationsAltmetricConceptsCD8+ T cellsAutoreactive T cellsT cellsType 1 diabetesPeripheral blood CD8+ T cellsBlood CD8+ T cellsExpansion of autoreactive T cellsOperational toleranceExpression of CD127Progression of type 1 diabetesAnti-CD3 mAbAntigen-specific repertoireT cell receptorAt-risk patientsAnalysis of study participantsStudy participantsIL7R expressionTeplizumab groupCD8+Placebo groupCD4+Clinical respondersFree intervalTeplizumabReduced expression of genesReshaping immune cells and the antigen-specific repertoire by anti-CD3 mAb teplizumab in Type 1 diabetes
lledo delgado A, Preston-Hurlburt P, Currie S, Clark P, Herold K. Reshaping immune cells and the antigen-specific repertoire by anti-CD3 mAb teplizumab in Type 1 diabetes. The Journal Of Immunology 2024, 212: 0958_5059-0958_5059. DOI: 10.4049/jimmunol.212.supp.0958.5059.Peer-Reviewed Original ResearchConceptsCD8+ T cellsT cellsType 1 diabetesCD8+ T cell exhaustionAutoreactive CD8+ T cellsT cell exhaustionT cell changesCD8+ cellsProgression of type 1 diabetesAnti-CD3 mAbAntigen-specific repertoireAt-risk patientsCD8+CD4+Eomes expressionPeripheral bloodTeplizumabImmune cellsImmune regulationT1D diagnosisCD8Operational toleranceDelay progressionMonthsIndividuals at-risk
2023
HSV-2 triggers upregulation of MALAT1 in CD4+ T cells and promotes HIV latency reversal
Pierce C, Loh L, Steach H, Cheshenko N, Preston-Hurlburt P, Zhang F, Stransky S, Kravets L, Sidoli S, Philbrick W, Nassar M, Krishnaswamy S, Herold K, Herold B. HSV-2 triggers upregulation of MALAT1 in CD4+ T cells and promotes HIV latency reversal. Journal Of Clinical Investigation 2023, 133: e164317. PMID: 37079384, PMCID: PMC10232005, DOI: 10.1172/jci164317.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsHIV-1 reactivationHIV latency reversalT cellsLatency reversalHuman CD4HIV-1 viral loadHIV-1 restriction factorsHSV-2 recurrencesHSV-2 infectionHIV-1 latencyUpregulation of MALAT1Primary human CD4HSV-2 proteinsViral loadHIV replicationPeripheral bloodMALAT1 expressionHSV-2Tissue reservoirsCD4Viral replicationExpression of transcriptsBystander cellsRestriction factorsMALAT1
2022
RAGE antagonism with azeliragon improves xenograft rejection by T cells in humanized mice.
Joshi AA, Wu Y, Deng S, Preston-Hurlburt P, Forbes JM, Herold KC. RAGE antagonism with azeliragon improves xenograft rejection by T cells in humanized mice. Clinical Immunology 2022, 245: 109165. PMID: 36257528, DOI: 10.1016/j.clim.2022.109165.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsXenograft rejectionIL-17AHumanized miceIL-1βT cellsImmune responseRAGE antagonistsAdaptive human immune responsesPD-1 expressionSkin graft rejectionHuman immune cell responsesImmune cell responsesHuman immune responseHuman immune cellsInnate immune responseAdvanced glycation endproductsInhibition of pathwaysSmall molecule antagonistsMultiple inflammatory processesAZ therapyRAGE antagonismGraft rejectionIL-23Serum levelsMedian timeHSV-2 increases replication of HIV in human T cells
Pierce C, Preston-Hurlburt P, Loh L, Steach H, Sidoli S, Zhang F, Philbrick W, Nassar M, Krishnaswamy S, Herold K, Herold B. HSV-2 increases replication of HIV in human T cells. The Journal Of Immunology 2022, 208: 182.40-182.40. DOI: 10.4049/jimmunol.208.supp.182.40.Peer-Reviewed Original ResearchConceptsCD4 cellsHSV-2HIV reactivationHIV PVLT cellsHerpes simplex virus 2 infectionLncRNA MALAT1Simplex virus 2 infectionHIV-LTR expressionHSV-2 lesionsMALAT1 gene expressionUninfected CD4 cellsFollicular helper cellsHSV-2 infectionCD4 T cellsHIV restriction factorsVirus 2 infectionGlobal HIV epidemicHSV-2 glycoprotein BHIV latent reservoirHuman T cellsInterferon response genesMucosal responsesHSV infectionLatent reservoir
2020
The receptor for advanced glycation endproducts (RAGE) modulates T cell signaling
Reed JC, Preston-Hurlburt P, Philbrick W, Betancur G, Korah M, Lucas C, Herold KC. The receptor for advanced glycation endproducts (RAGE) modulates T cell signaling. PLOS ONE 2020, 15: e0236921. PMID: 32986722, PMCID: PMC7521722, DOI: 10.1371/journal.pone.0236921.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsConceptsT cellsAdvanced glycation endproductsRAGE expressionGlycation endproductsType 1 diabetes mellitusLess IL-2T cell reactivityT-cell phenotypeHealthy control subjectsIL-2 productionT cell receptorPhosphorylation of ZAP70Human T cellsDiabetes mellitusAutoimmune diseasesJurkat cellsCell reactivityControl subjectsInflammatory productsIL-2Primary CD4T cell signalingCell receptorPatientsCell phenotypeImmune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients
Pierce CA, Preston-Hurlburt P, Dai Y, Aschner CB, Cheshenko N, Galen B, Garforth SJ, Herrera NG, Jangra RK, Morano NC, Orner E, Sy S, Chandran K, Dziura J, Almo SC, Ring A, Keller MJ, Herold KC, Herold BC. Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Science Translational Medicine 2020, 12: eabd5487. PMID: 32958614, PMCID: PMC7658796, DOI: 10.1126/scitranslmed.abd5487.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsImmune responsePediatric patientsAntibody titersAdult patientsSerum concentrationsT cellsSevere acute respiratory syndrome coronavirus 2IFN-γ serum concentrationsAcute respiratory syndrome coronavirus 2Robust T cell responsesSARS-CoV-2 infectionAntibody-dependent cellular phagocytosisRespiratory syndrome coronavirus 2Frequency of IFNMultisystem inflammatory syndromeT cell responsesCellular immune responsesSyndrome coronavirus 2Adaptive immune responsesAntiviral immune responseTumor necrosis factorMetropolitan hospital systemCoronavirus disease 2019COVID-19Age-dependent factorsUse of CART cells to selectively target autoantigen-specific T cells for the treatment of autoimmune diabetes
Yu H, Bettini M, Ellis G, Riley J, Collins J, Preston-Hurlburt P, Korah M, Mallone R, Deng S, Wang X, Fremont D, Spiegel D, Cresswell P, Herold K. Use of CART cells to selectively target autoantigen-specific T cells for the treatment of autoimmune diabetes. The Journal Of Immunology 2020, 204: 238.8-238.8. DOI: 10.4049/jimmunol.204.supp.238.8.Peer-Reviewed Original ResearchConceptsCART cellsT cellsAutoimmune diabetesCAR constructsHuman antigen-specific CD8Autoantigen-specific T cellsAntigen-specific CD8Pathogenic T cellsPrevious clinical trialsΒ-cell damageChimeric antigen receptorNon-specific actionT cell linesHuman T cellsDominant cell typeHuman insulitisPathogenic subpopulationsNovel immunotherapiesPrimary human T cellsClinical trialsPrimary mediatorPeptide epitopesAntigen receptorMicroglobulin complexCAR signalingHSV-2 infects T follicular helper cells to promote HIV reactivation
Pierce C, Loh L, Preston-Hurlburt P, Herold K, Herold B. HSV-2 infects T follicular helper cells to promote HIV reactivation. The Journal Of Immunology 2020, 204: 247.24-247.24. DOI: 10.4049/jimmunol.204.supp.247.24.Peer-Reviewed Original ResearchConceptsCD4 T cellsFollicular helper cellsHIV reactivationHSV-2T cellsTfh cellsIL-32Helper cellsSystemic effectsCD4 T-cell subpopulationsT Follicular Helper CellsHSV-2 recurrencesHSV-2 seropositiveT cell subpopulationsGlobal HIV epidemicPotential systemic effectsT cell linesSeronegative womenIL-32γHigh HIVViral loadHIV transmissionLatent HIVProinflammatory cytokinesHIV epidemic
2018
Treatment of type 1 diabetes with teplizumab: clinical and immunological follow-up after 7 years from diagnosis
Perdigoto AL, Preston-Hurlburt P, Clark P, Long SA, Linsley PS, Harris KM, Gitelman SE, Greenbaum CJ, Gottlieb PA, Hagopian W, Woodwyk A, Dziura J, Herold KC. Treatment of type 1 diabetes with teplizumab: clinical and immunological follow-up after 7 years from diagnosis. Diabetologia 2018, 62: 655-664. PMID: 30569273, PMCID: PMC6402971, DOI: 10.1007/s00125-018-4786-9.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAdolescentAdultAntibodies, Monoclonal, HumanizedArea Under CurveAutoimmunityCD3 ComplexCD8-Positive T-LymphocytesChildC-PeptideCytokinesDiabetes Mellitus, Type 1FemaleFollow-Up StudiesHumansHypoglycemic AgentsInsulinIslets of LangerhansMaleRandomized Controlled Trials as TopicRemission InductionTreatment OutcomeYoung AdultConceptsC-peptide responseType 1 diabetesMixed meal tolerance testDetectable C-peptideC-peptideInsulin useTolerance testT cellsControl groupNew-onset type 1 diabetesPeripheral blood mononuclear cellsConclusions/interpretationThese findingsAnti-CD3 monoclonal antibodyDaily insulin useBlood mononuclear cellsDiagnosis of diabetesSuccessful immune therapiesOriginal control groupCell death proteinAnergic CD8ResultsFifty-sixImmune therapyInterpretationThese findingsMononuclear cellsCytokine release