2006
The Properties of Steric Gate Mutants Reveal Different Constraints within the Active Sites of Y-family and A-family DNA Polymerases*
DeLucia A, Chaudhuri S, Potapova O, Grindley N, Joyce C. The Properties of Steric Gate Mutants Reveal Different Constraints within the Active Sites of Y-family and A-family DNA Polymerases*. Journal Of Biological Chemistry 2006, 281: 27286-27291. PMID: 16831866, DOI: 10.1074/jbc.m604393200.Peer-Reviewed Original Research
2005
Structure of a Synaptic γδ Resolvase Tetramer Covalently Linked to Two Cleaved DNAs
Li W, Kamtekar S, Xiong Y, Sarkis GJ, Grindley ND, Steitz TA. Structure of a Synaptic γδ Resolvase Tetramer Covalently Linked to Two Cleaved DNAs. Science 2005, 309: 1210-1215. PMID: 15994378, DOI: 10.1126/science.1112064.Peer-Reviewed Original Research
2003
The Architecture of the γδ Resolvase Crossover Site Synaptic Complex Revealed by Using Constrained DNA Substrates
Leschziner A, Grindley N. The Architecture of the γδ Resolvase Crossover Site Synaptic Complex Revealed by Using Constrained DNA Substrates. Molecular Cell 2003, 12: 775-781. PMID: 14527421, DOI: 10.1016/s1097-2765(03)00351-4.Peer-Reviewed Original ResearchUse of 2-Aminopurine Fluorescence To Examine Conformational Changes during Nucleotide Incorporation by DNA Polymerase I (Klenow Fragment) †
Purohit V, Grindley N, Joyce C. Use of 2-Aminopurine Fluorescence To Examine Conformational Changes during Nucleotide Incorporation by DNA Polymerase I (Klenow Fragment) †. Biochemistry 2003, 42: 10200-10211. PMID: 12939148, DOI: 10.1021/bi0341206.Peer-Reviewed Original Research
2002
Discrimination against purine–pyrimidine mispairs in the polymerase active site of DNA polymerase I: A structural explanation
Minnick D, Liu L, Grindley N, Kunkel T, Joyce C. Discrimination against purine–pyrimidine mispairs in the polymerase active site of DNA polymerase I: A structural explanation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2002, 99: 1194-1199. PMID: 11830658, PMCID: PMC122166, DOI: 10.1073/pnas.032457899.Peer-Reviewed Original Research
2001
Contacts between the 5′ Nuclease of DNA Polymerase I and Its DNA Substrate*
Xu Y, Potapova O, Leschziner A, Grindley N, Joyce C. Contacts between the 5′ Nuclease of DNA Polymerase I and Its DNA Substrate*. Journal Of Biological Chemistry 2001, 276: 30167-30177. PMID: 11349126, DOI: 10.1074/jbc.m100985200.Peer-Reviewed Original ResearchMeSH KeywordsArginineBase SequenceBinding SitesCircular DichroismDNADNA Polymerase IDNA RepairEscherichia coliKineticsLysineModels, ChemicalModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedMutationOrganophosphorus CompoundsPhosphatesProtein BindingProtein Structure, TertiarySubstrate SpecificityTemperatureTime FactorsConceptsDNA substratesDNA polymerase INuclease domainCleavage siteBasic residuesPolymerase IDuplex DNANuclease cleavagePhosphate ethylation interferenceDNA-binding regionActive site regionDNA replicationOne-half turnBacteriophage T5Eukaryotic nucleasesSubstrate bindingAbasic DNAEthylation interferenceDuplex portionHelical archNucleaseSite regionEscherichia coliMethylphosphonate substitutionsPrimer strand
2000
Coordination between the Polymerase and 5′-Nuclease Components of DNA Polymerase I of Escherichia coli *
Xu Y, Grindley N, Joyce C. Coordination between the Polymerase and 5′-Nuclease Components of DNA Polymerase I of Escherichia coli *. Journal Of Biological Chemistry 2000, 275: 20949-20955. PMID: 10806216, DOI: 10.1074/jbc.m909135199.Peer-Reviewed Original Research
1999
Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity
Arnold P, Blake D, Grindley N, Boocock M, Stark W. Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. The EMBO Journal 1999, 18: 1407-1414. PMID: 10064606, PMCID: PMC1171230, DOI: 10.1093/emboj/18.5.1407.Peer-Reviewed Original Research
1998
A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides
Astatke M, Ng K, Grindley N, Joyce C. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 3402-3407. PMID: 9520378, PMCID: PMC19848, DOI: 10.1073/pnas.95.7.3402.Peer-Reviewed Original Research
1997
Site-specific recombination: Synapsis and strand exchange revealed
Grindley N. Site-specific recombination: Synapsis and strand exchange revealed. Current Biology 1997, 7: r608-r612. PMID: 9368738, DOI: 10.1016/s0960-9822(06)00314-9.Peer-Reviewed Original ResearchTwo abundant intramolecular transposition products, resulting from reactions initiated at a single end, suggest that IS2 transposes by an unconventional pathway
Lewis L, Grindley N. Two abundant intramolecular transposition products, resulting from reactions initiated at a single end, suggest that IS2 transposes by an unconventional pathway. Molecular Microbiology 1997, 25: 517-529. PMID: 9302014, DOI: 10.1046/j.1365-2958.1997.4871848.x.Peer-Reviewed Original ResearchBacterial ProteinsBase SequenceBinding SitesCloning, MolecularDNA NucleotidyltransferasesDNA PrimersDNA Transposable ElementsDNA, BacterialDNA, CircularEscherichia coliEscherichia coli ProteinsMicroscopy, ElectronModels, GeneticMolecular Sequence DataNucleic Acid ConformationPolymerase Chain ReactionRecombinant Fusion ProteinsTransposases
1995
Catalytic residues of gamma delta resolvase act in cis.
Boocock M, Zhu X, Grindley N. Catalytic residues of gamma delta resolvase act in cis. The EMBO Journal 1995, 14: 5129-5140. PMID: 7588641, PMCID: PMC394616, DOI: 10.1002/j.1460-2075.1995.tb00195.x.Peer-Reviewed Original ResearchBase SequenceBinding SitesCrossing Over, GeneticDNA NucleotidyltransferasesDNA Topoisomerases, Type IDNA Transposable ElementsGenetic Complementation TestModels, GeneticModels, MolecularMolecular Sequence DataPlasmidsRecombination, GeneticStructure-Activity RelationshipSubstrate SpecificityTransposasesA functional analysis of the inverted repeat of the gamma delta transposable element.
May E, Grindley N. A functional analysis of the inverted repeat of the gamma delta transposable element. Journal Of Molecular Biology 1995, 247: 578-87. PMID: 7723015, DOI: 10.1006/jmbi.1995.0164.Peer-Reviewed Original ResearchConceptsIntegration host factorInverted repeatsBase pairsTransposable elementsTransposase bindingGroove contactsIHF siteReduced transposition activityTerminal inverted repeatsMinor groove contactsBase pair regionGamma delta transposaseBase pair stretchSusceptible to mutationsTransposon gamma deltaTn3 familyTransposition activityPoint mutantsTarget plasmidTransposition defectBinding regionMutationsBinding sitesBinding contactsHost factorsA functional analysis of the inverted repeat of the γδ transposable element
May E, Grindley N. A functional analysis of the inverted repeat of the γδ transposable element. Journal Of Molecular Biology 1995, 247: 578-587. DOI: 10.1016/s0022-2836(05)80139-1.Peer-Reviewed Original ResearchDeoxynucleoside Triphosphate and Pyrophosphate Binding Sites in the Catalytically Competent Ternary Complex for the Polymerase Reaction Catalyzed by DNA Polymerase I (Klenow Fragment) (∗)
Astatke M, Grindley N, Joyce C. Deoxynucleoside Triphosphate and Pyrophosphate Binding Sites in the Catalytically Competent Ternary Complex for the Polymerase Reaction Catalyzed by DNA Polymerase I (Klenow Fragment) (∗). Journal Of Biological Chemistry 1995, 270: 1945-1954. PMID: 7829532, DOI: 10.1074/jbc.270.4.1945.Peer-Reviewed Original ResearchAmino Acid SequenceBacteriaBase SequenceBinding SitesConserved SequenceDeoxyribonucleotidesDiphosphatesDNA Polymerase IDNA PrimersKineticsMacromolecular SubstancesModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedOligodeoxyribonucleotidesPoint MutationPolymerase Chain ReactionProtein Structure, SecondarySaccharomyces cerevisiaeSequence Homology, Amino Acid
1993
Analysis of a Nucleoprotein Complex: the Synaptosome of γδ Resolvase
Grindley N. Analysis of a Nucleoprotein Complex: the Synaptosome of γδ Resolvase. Science 1993, 262: 738-740. PMID: 8235593, DOI: 10.1126/science.8235593.Peer-Reviewed Original ResearchMapping interactions between the catalytic domain of resolvase and its DNA substrate using cysteine-coupled EDTA-iron.
Mazzarelli J, Ermácora M, Fox R, Grindley N. Mapping interactions between the catalytic domain of resolvase and its DNA substrate using cysteine-coupled EDTA-iron. Biochemistry 1993, 32: 2979-86. PMID: 8384484, DOI: 10.1021/bi00063a008.Peer-Reviewed Original Research
1992
Reactions at the polymerase active site that contribute to the fidelity of Escherichia coli DNA polymerase I (Klenow fragment).
Joyce C, Sun X, Grindley N. Reactions at the polymerase active site that contribute to the fidelity of Escherichia coli DNA polymerase I (Klenow fragment). Journal Of Biological Chemistry 1992, 267: 24485-24500. PMID: 1447195, DOI: 10.1016/s0021-9258(18)35792-2.Peer-Reviewed Original ResearchBinding of the IS903 transposase to its inverted repeat in vitro.
Derbyshire K, Grindley N. Binding of the IS903 transposase to its inverted repeat in vitro. The EMBO Journal 1992, 11: 3449-3455. PMID: 1324175, PMCID: PMC556880, DOI: 10.1002/j.1460-2075.1992.tb05424.x.Peer-Reviewed Original Research
1991
Gamma delta transposase. Purification and analysis of its interaction with a transposon end
Wiater L, Grindley N. Gamma delta transposase. Purification and analysis of its interaction with a transposon end. Journal Of Biological Chemistry 1991, 266: 1841-1849. PMID: 1846366, DOI: 10.1016/s0021-9258(18)52370-x.Peer-Reviewed Original Research