2024
Spectral Brain Graph Neural Network for Prediction of Anxiety in Children with Autism Spectrum Disorder
Duan P, Dvornek N, Wang J, Eilbott J, Du Y, Sukhodolsky D, Duncan J. Spectral Brain Graph Neural Network for Prediction of Anxiety in Children with Autism Spectrum Disorder. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2024, 00: 1-5. PMID: 39697611, PMCID: PMC11655121, DOI: 10.1109/isbi56570.2024.10635753.Peer-Reviewed Original ResearchGraph neural networksFunctional magnetic resonance imagingAutism spectrum disorderNeural networkCurrent graph neural networksSpectrum disorderMASC-2Spectral analysis algorithmAnalysis algorithmGraph-based networkMultidimensional Anxiety ScaleFast Fourier transformPredictive of anxietyDaily anxiety levelsExtract hidden informationBrain functional networksPower spectrum densityNode featuresNetwork performanceComorbid anxietyBrain mechanismsHidden informationCorrelated featuresAnxiety ScaleTotal scoreChapter 13 Data-driven learning strategies for biomarker detection and outcome prediction in Autism from task-based fMRI
Duncan J, Staib L, Dvornek N, Li X, Zhuang J, Wang J, Ventola P. Chapter 13 Data-driven learning strategies for biomarker detection and outcome prediction in Autism from task-based fMRI. 2024, 357-393. DOI: 10.1016/b978-0-32-385124-4.00024-6.Peer-Reviewed Original ResearchLong short-term memoryGraph neural networksFunctional magnetic resonance imagingAutism spectrum disorderNeural ordinary differential equationsData-driven learning strategyDeep learning techniquesTask-based functional magnetic resonance imagingShort-term memoryNeural networkLearning techniquesImpaired social interactionTerm memoryBehavioral therapyRepetitive behaviorsSpectrum disorderDevelopmental disordersLearning strategiesSpatio-temporal characteristicsInherent dynamicsCharacterization of individualsModel of causalitySocial interactionNetworkPersonalized outcome predictions
2018
Combining Phenotypic and Resting-State FMRI Data for Autism Classification with Recurrent Neural Networks
Dvornek NC, Ventola P, Duncan JS. Combining Phenotypic and Resting-State FMRI Data for Autism Classification with Recurrent Neural Networks. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2018, 2018: 725-728. PMID: 30288208, PMCID: PMC6166875, DOI: 10.1109/isbi.2018.8363676.Peer-Reviewed Original ResearchAutism spectrum disorderRecurrent neural networkNeural networkAutism Brain Imaging Data ExchangeSingle deep learning frameworkHeterogeneity of ASDFunctional magnetic resonance imagingDeep learning frameworkResting-state fMRI dataResting-state functional magnetic resonance imagingBetter classification accuracyAutism classificationSpectrum disorderData exchangeLearning frameworkFMRI dataClassification accuracyCross-validation frameworkChallenging taskStraightforward taskPrior workNetworkSuch dataRsfMRITask
2017
Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks
Dvornek NC, Ventola P, Pelphrey KA, Duncan JS. Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks. Lecture Notes In Computer Science 2017, 10541: 362-370. PMID: 29104967, PMCID: PMC5669262, DOI: 10.1007/978-3-319-67389-9_42.Peer-Reviewed Original ResearchFunctional magnetic resonance imagingAutism spectrum disorderLong short-term memoryAutism Brain Imaging Data Exchange IResting-state functional connectivity measuresShort-term memoryLong short-term memory networkResting-state functional magnetic resonance imagingShort-term memory networkFunctional connectivity measuresPotential functional networksTypical controlsSpectrum disorderASD biomarkersMemory networkRecurrent neural networkExchange IMulti-site dataFMRI dataFunctional networksLSTM modelClassification of individualsCross-validation frameworkConnectivity measuresObjective biomarkers
2016
Brain responses to biological motion predict treatment outcome in young children with autism
Yang D, Pelphrey KA, Sukhodolsky DG, Crowley MJ, Dayan E, Dvornek NC, Venkataraman A, Duncan J, Staib L, Ventola P. Brain responses to biological motion predict treatment outcome in young children with autism. Translational Psychiatry 2016, 6: e948-e948. PMID: 27845779, PMCID: PMC5314125, DOI: 10.1038/tp.2016.213.Peer-Reviewed Original ResearchConceptsAutism spectrum disorderYoung childrenSocial information processingMultivariate pattern analysisMotivation/rewardBiological motionCore deficitComplex neurodevelopmental disorderBrain responsesResponse treatmentSpectrum disorderNeurobiological markersNeural predictorsInformation processingBehavioral interventionsIndividual childrenNeurodevelopmental disordersCurrent findingsNeural circuitsBehavioral deficitsEarly childhoodChildrenUnsuccessful interventionsNeurobiomarkersPattern analysisPivotal response treatment prompts a functional rewiring of the brain among individuals with autism spectrum disorder
Venkataraman A, Yang D, Dvornek N, Staib LH, Duncan JS, Pelphrey KA, Ventola P. Pivotal response treatment prompts a functional rewiring of the brain among individuals with autism spectrum disorder. Neuroreport 2016, 27: 1081-1085. PMID: 27532879, PMCID: PMC5007196, DOI: 10.1097/wnr.0000000000000662.Peer-Reviewed Original ResearchConceptsPivotal Response TreatmentAutism spectrum disorderOccipital-temporal cortexAttentional systemResponse treatmentSpectrum disorderOrbitofrontal cortexPosterior cingulateHigh-level objectsBehavioral interventionsLearning mechanismPerception shiftProcessing areasNeural circuitsFunctional rewiringCortexTreatment regimenAutismInterventionNovel Bayesian frameworkCingulateFunctional changesIndividualsDisordersObjects