2024
Self-supervised Pre-training Tasks for an fMRI Time-Series Transformer in Autism Detection
Zhou Y, Duan P, Du Y, Dvornek N. Self-supervised Pre-training Tasks for an fMRI Time-Series Transformer in Autism Detection. Lecture Notes In Computer Science 2024, 15266: 145-154. DOI: 10.1007/978-3-031-78761-4_14.Peer-Reviewed Original ResearchSelf-supervised pre-training tasksPre-training tasksFunctional magnetic resonance imagingPre-training stepTransformer-based modelsTime-series fMRI dataTraining data availabilityAutism spectrum disorderTime series transformationsTransformation modelMachine learning methodsFunctional magnetic resonance imaging time-series dataClassification taskPublic datasetsTraining dataOver-fittingComputed functional connectivityLearning methodsModel performanceMasking strategyAutism detectionCross-validationTaskDatasetAverage improvementCLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning
Du Y, Chang B, Dvornek N. CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning. Lecture Notes In Computer Science 2024, 15012: 465-475. DOI: 10.1007/978-3-031-72390-2_44.Peer-Reviewed Original ResearchContrastive Language-Image Pre-trainingLanguage modelState-of-the-art performanceSelf-supervised representation learningContrastive learning methodFine-tuningProlonged training timeBERT encoderContrastive learningRepresentation learningClass labelsGPU resourcesTraining samplesTraining timeMammography datasetModel sizePre-trainingLearning methodsEfficient frameworkVisual modelRichness of informationDatasetClinical diagnostic dataLearningMedical applicationsSIFT-DBT: Self-Supervised Initialization and Fine-Tuning for Imbalanced Digital Breast Tomosynthesis Image Classification
Du Y, Hooley R, Lewin J, Dvornek N. SIFT-DBT: Self-Supervised Initialization and Fine-Tuning for Imbalanced Digital Breast Tomosynthesis Image Classification. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2024, 00: 1-5. PMID: 39263046, PMCID: PMC11386909, DOI: 10.1109/isbi56570.2024.10635723.Peer-Reviewed Original Research
2023
Chapter 13 Deep learning with connectomes
Dvornek N, Li X. Chapter 13 Deep learning with connectomes. 2023, 289-308. DOI: 10.1016/b978-0-323-85280-7.00013-0.ChaptersDeep learning modelsLearning modelDeep learningClassic computer visionNeural network architectureImage analysis problemsMachine learning methodsNeural network modelComputer visionPotential future workNetwork architectureNonlinear neural network modelArt resultsPrediction taskLearning methodsNetwork modelAnalysis problemUseful representationConnectomePopular typeLearningFuture workData analysisArchitectureTask