2024
Self-supervised Pre-training Tasks for an fMRI Time-Series Transformer in Autism Detection
Zhou Y, Duan P, Du Y, Dvornek N. Self-supervised Pre-training Tasks for an fMRI Time-Series Transformer in Autism Detection. Lecture Notes In Computer Science 2024, 15266: 145-154. DOI: 10.1007/978-3-031-78761-4_14.Peer-Reviewed Original ResearchSelf-supervised pre-training tasksPre-training tasksFunctional magnetic resonance imagingPre-training stepTransformer-based modelsTime-series fMRI dataTraining data availabilityAutism spectrum disorderTime series transformationsTransformation modelMachine learning methodsFunctional magnetic resonance imaging time-series dataClassification taskPublic datasetsTraining dataOver-fittingComputed functional connectivityLearning methodsModel performanceMasking strategyAutism detectionCross-validationTaskDatasetAverage improvementSpectral Brain Graph Neural Network for Prediction of Anxiety in Children with Autism Spectrum Disorder
Duan P, Dvornek N, Wang J, Eilbott J, Du Y, Sukhodolsky D, Duncan J. Spectral Brain Graph Neural Network for Prediction of Anxiety in Children with Autism Spectrum Disorder. 2024, 00: 1-5. DOI: 10.1109/isbi56570.2024.10635753.Peer-Reviewed Original ResearchGraph neural networksFunctional magnetic resonance imagingAutism spectrum disorderNeural networkCurrent graph neural networksSpectrum disorderMASC-2Spectral analysis algorithmAnalysis algorithmGraph-based networkMultidimensional Anxiety ScaleFast Fourier transformPredictive of anxietyDaily anxiety levelsExtract hidden informationBrain functional networksPower spectrum densityNode featuresNetwork performanceComorbid anxietyBrain mechanismsHidden informationCorrelated featuresAnxiety ScaleTotal scoreChapter 13 Data-driven learning strategies for biomarker detection and outcome prediction in Autism from task-based fMRI
Duncan J, Staib L, Dvornek N, Li X, Zhuang J, Wang J, Ventola P. Chapter 13 Data-driven learning strategies for biomarker detection and outcome prediction in Autism from task-based fMRI. 2024, 357-393. DOI: 10.1016/b978-0-32-385124-4.00024-6.Peer-Reviewed Original ResearchLong short-term memoryGraph neural networksFunctional magnetic resonance imagingAutism spectrum disorderNeural ordinary differential equationsData-driven learning strategyDeep learning techniquesTask-based functional magnetic resonance imagingShort-term memoryNeural networkLearning techniquesImpaired social interactionTerm memoryBehavioral therapyRepetitive behaviorsSpectrum disorderDevelopmental disordersLearning strategiesSpatio-temporal characteristicsInherent dynamicsCharacterization of individualsModel of causalitySocial interactionNetworkPersonalized outcome predictions
2022
Characterization of Early Stage Parkinson's Disease From Resting-State fMRI Data Using a Long Short-Term Memory Network
Guo X, Tinaz S, Dvornek N. Characterization of Early Stage Parkinson's Disease From Resting-State fMRI Data Using a Long Short-Term Memory Network. Frontiers In Neuroimaging 2022, 1: 952084. PMID: 37555151, PMCID: PMC10406199, DOI: 10.3389/fnimg.2022.952084.Peer-Reviewed Original ResearchEarly-stage Parkinson's diseaseFunctional magnetic resonance imagingParkinson's Progression Markers InitiativeParkinson's diseaseProgression Markers InitiativeDiagnosis of PDEarly-stage diseaseFunctional brain changesBrain function alterationsStage Parkinson's diseaseFunctional connectivity differencesComplex neurodegenerative disorderMagnetic resonance imagingResting-state fMRI dataStage diseaseDisease stageDisease progressionBrain changesTreatment responseMotor impairmentFC changesNew therapiesFunction alterationsResonance imagingBrain regions
2018
Combining Phenotypic and Resting-State FMRI Data for Autism Classification with Recurrent Neural Networks
Dvornek NC, Ventola P, Duncan JS. Combining Phenotypic and Resting-State FMRI Data for Autism Classification with Recurrent Neural Networks. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2018, 2018: 725-728. PMID: 30288208, PMCID: PMC6166875, DOI: 10.1109/isbi.2018.8363676.Peer-Reviewed Original ResearchAutism spectrum disorderRecurrent neural networkNeural networkAutism Brain Imaging Data ExchangeSingle deep learning frameworkHeterogeneity of ASDFunctional magnetic resonance imagingDeep learning frameworkResting-state fMRI dataResting-state functional magnetic resonance imagingBetter classification accuracyAutism classificationSpectrum disorderData exchangeLearning frameworkFMRI dataClassification accuracyCross-validation frameworkChallenging taskStraightforward taskPrior workNetworkSuch dataRsfMRITask
2017
Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks
Dvornek NC, Ventola P, Pelphrey KA, Duncan JS. Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks. Lecture Notes In Computer Science 2017, 10541: 362-370. PMID: 29104967, PMCID: PMC5669262, DOI: 10.1007/978-3-319-67389-9_42.Peer-Reviewed Original ResearchFunctional magnetic resonance imagingAutism spectrum disorderLong short-term memoryAutism Brain Imaging Data Exchange IResting-state functional connectivity measuresShort-term memoryLong short-term memory networkResting-state functional magnetic resonance imagingShort-term memory networkFunctional connectivity measuresPotential functional networksTypical controlsSpectrum disorderASD biomarkersMemory networkRecurrent neural networkExchange IMulti-site dataFMRI dataFunctional networksLSTM modelClassification of individualsCross-validation frameworkConnectivity measuresObjective biomarkers