2023
Prediction Modeling of CAR-T Cell Therapy for Diffuse Large B-Cell Lymphoma Using Artificial Neural Networks on Tumor Vascular Phenotype
Verma A, Liburd S, Tobias Z, Isufi I, Pober J, Xu M. Prediction Modeling of CAR-T Cell Therapy for Diffuse Large B-Cell Lymphoma Using Artificial Neural Networks on Tumor Vascular Phenotype. Blood 2023, 142: 2075. DOI: 10.1182/blood-2023-184963.Peer-Reviewed Original ResearchDiffuse large B-cell lymphomaPre-treatment biopsiesVenular endothelial cellsLarge B-cell lymphomaMemory T cellsHigh endothelial venulesT cellsB-cell lymphomaVCAM-1E-selectinICAM-1Endothelial cellsChimeric antigen receptor T-cell therapyL-selectinPre-treatment tumor biopsiesEffector memory T cellsCentral memory T cellsCAR T-cell therapyCell therapyHEV endothelial cellsInflamed lymph nodesT-cell infiltratesT cell exhaustionT-cell therapyT-cell homing
2022
Peripheral Blood Involvement at Staging in Patients With Aggressive Peripheral T-Cell Lymphoma
Avery J, Chandhok N, Rainey C, Torres R, Huntington S, Isufi I, Seropian S, Xu ML, Foss F. Peripheral Blood Involvement at Staging in Patients With Aggressive Peripheral T-Cell Lymphoma. Clinical Lymphoma Myeloma & Leukemia 2022, 22: 680-689. PMID: 35568635, DOI: 10.1016/j.clml.2022.04.019.Peer-Reviewed Original ResearchConceptsPeripheral T-cell lymphomaT-cell lymphomaBone marrow involvementBlood involvementFlow cytometryMarrow involvementNodal subtypesAggressive peripheral T-cell lymphomaNodal T-cell lymphomasNegative flow cytometryPeripheral blood involvementPositive flow cytometryMalignant T cellsMalignant tumor cellsMedian PFSTime ofdiagnosisOverall survivalLymph nodesPoor outcomeDisease stagePeripheral bloodT cellsPrognostic measuresRare subgroupLymphoma
2020
Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma
Hegde M, Joseph SK, Pashankar F, DeRenzo C, Sanber K, Navai S, Byrd TT, Hicks J, Xu ML, Gerken C, Kalra M, Robertson C, Zhang H, Shree A, Mehta B, Dakhova O, Salsman VS, Grilley B, Gee A, Dotti G, Heslop HE, Brenner MK, Wels WS, Gottschalk S, Ahmed N. Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nature Communications 2020, 11: 3549. PMID: 32669548, PMCID: PMC7363864, DOI: 10.1038/s41467-020-17175-8.Peer-Reviewed Original ResearchConceptsHER2-CAR T cellsCAR T cellsT-cell infusionCAR T-cell infusionT cellsMetastatic rhabdomyosarcomaOngoing phase I trialPhase I trialT cell receptorSecond remissionI trialSerum autoantibodiesImmune reactivityDetectable diseaseTumor responseBone marrowResponse consolidationInfusionRhabdomyosarcomaImmunodominant clonesLymphodepletionRemissionPathway proteinsDiseaseMonthsDifferential effects of PD-L1 versus PD-1 blockade on myeloid inflammation in human cancer
Bar N, Costa F, Das R, Duffy A, Samur M, McCachren S, Gettinger S, Neparidze N, Parker TL, Bailur JK, Pendleton K, Bajpai R, Zhang L, Xu ML, Anderson T, Giuliani N, Nooka A, Cho HJ, Raval A, Shanmugam M, Dhodapkar KM, Dhodapkar M. Differential effects of PD-L1 versus PD-1 blockade on myeloid inflammation in human cancer. JCI Insight 2020, 5 PMID: 32427579, PMCID: PMC7406262, DOI: 10.1172/jci.insight.129353.Peer-Reviewed Original ResearchConceptsPD-L1 blockadePD-1 blockadeAsymptomatic multiple myelomaMonocyte-derived DCsPD-L1Immunologic effectsT cellsMyeloid cellsAntigen-specific T cell expansionAnti-PD-1 therapyMyeloid antigen-presenting cellsDistinct inflammatory signatureSystemic immunologic effectsLung cancer patientsT cell expansionAntigen-presenting cellsMyeloid activationMyeloid inflammationInflammatory signatureNIH/NCICheckpoint blockadeDC maturationL1 therapyCombination therapyInflammatory phenotypeMajor Subtypes of Mature T- and NK-Cell Neoplasms
Irshaid L, Xu M. Major Subtypes of Mature T- and NK-Cell Neoplasms. Practical Anatomic Pathology 2020, 175-188. DOI: 10.1007/978-3-030-32189-5_8.Peer-Reviewed Original ResearchT-cell lymphomaNK-cell neoplasmsPeripheral T-cell lymphomaAngioimmunoblastic T-cell lymphomaCutaneous T-cell lymphomaBusy practiceAnaplastic large cell lymphomaCommon T-cellNK-cell lymphomasLarge cell lymphomaClinical workupT cellsCell lymphomaLymphomaMajor subtypesNeoplasmsMature TMolecular evaluationWorkupSubtypesIntestineBenign lymph node microenvironment is associated with response to immunotherapy
Toki MI, Kumar D, Ahmed FS, Rimm DL, Xu ML. Benign lymph node microenvironment is associated with response to immunotherapy. Precision Clinical Medicine 2020, 3: 44-53. PMID: 35693430, PMCID: PMC8985791, DOI: 10.1093/pcmedi/pbaa003.Peer-Reviewed Original ResearchBenign lymph nodesLymph nodesT cellsQuantitative immunofluorescenceBenign lymphPD-L1Immune checkpoint blockade therapyMultiplexed quantitative immunofluorescenceHigh expressionCheckpoint blockade therapyMacrophage marker expressionSignificant differencesCytotoxic markersBlockade therapyBenign findingsCancer patientsLymphoid tissueImmune surveillanceTreatment responsePostmortem examinationImmunotherapyProliferation indexSplenic tissueB cellsPatients
2018
Microenvironment Cell Contribution to Lymphoma Immunity
Kumar D, Xu ML. Microenvironment Cell Contribution to Lymphoma Immunity. Frontiers In Oncology 2018, 8: 288. PMID: 30101129, PMCID: PMC6073855, DOI: 10.3389/fonc.2018.00288.Peer-Reviewed Original ResearchLymphoma-associated macrophagesMesenchymal stem/stromal cellsT cellsLymphoma microenvironmentStromal cellsMarkers of exhaustionImmune checkpoint blockadeRegulatory T cellsEra of immunotherapyNatural killer cellsAnti-tumor effectsStem/stromal cellsLymphoma immunityTim-3Adverse eventsCheckpoint blockadeDendritic cellsImmune dysfunctionKiller cellsPD-1Immune cellsMechanisms of resistanceImmune escapeTumor surveillanceLAG-3Patients with common variable immunodeficiency with autoimmune cytopenias exhibit hyperplastic yet inefficient germinal center responses
Romberg N, Le Coz C, Glauzy S, Schickel JN, Trofa M, Nolan BE, Paessler M, Xu M, Lambert MP, Lakhani SA, Khokha MK, Jyonouchi S, Heimall J, Takach P, Maglione PJ, Catanzaro J, Hsu FI, Sullivan KE, Cunningham-Rundles C, Meffre E. Patients with common variable immunodeficiency with autoimmune cytopenias exhibit hyperplastic yet inefficient germinal center responses. Journal Of Allergy And Clinical Immunology 2018, 143: 258-265. PMID: 29935219, PMCID: PMC6400323, DOI: 10.1016/j.jaci.2018.06.012.Peer-Reviewed Original ResearchConceptsCommon variable immunodeficiencyVariable immunodeficiencyB cellsCommensal bacteriaIsotype-switched memory B cellsRegulatory T cell frequencyFollicular helper T cellsGC responseIsotype-switched antibodiesT cell frequenciesSubset of patientsT cell compartmentHelper T cellsPeripheral blood samplesMemory B cellsGerminal center responseB cell clonesAutoimmune cytopeniasGC hyperplasiaSerum endotoxemiaExcisional lymphAntibody responseT cellsMucosal microbiotaSomatic hypermutation frequencies
2015
Identification of a Cereblon-Independent Protein Degradation Pathway in Residual Myeloma Cells Treated with Immunomodulatory Drugs
Verma R, Mai Z, Xu M, Zhang L, Dhodapkar K, Dhodapkar M. Identification of a Cereblon-Independent Protein Degradation Pathway in Residual Myeloma Cells Treated with Immunomodulatory Drugs. Blood 2015, 126: 913. DOI: 10.1182/blood.v126.23.913.913.Peer-Reviewed Original ResearchResidual MM cellsDegradation of IKZF1MM cellsClonogenic growthRNAi-mediated inhibitionHDAC inhibitorsMyeloma cellsResidual myeloma cellsSynergistic anti-tumor effectImmune-modulatory drugsHuman MM cellsPrimary MM cellsAnti-myeloma effectTrichostatin AMM plasma cellsAnti-tumor effectsMM cell linesAnti-proliferative effectsConcurrent therapyImmunomodulatory drugsResidual diseaseModulatory drugsPlasma cellsT cellsRecent studies