2001
Intramyocardial delivery of FGF2 in combination with radio frequency transmyocardial revascularization
Bao J, Naimark W, Palasis M, Laham R, Simons M, Post M. Intramyocardial delivery of FGF2 in combination with radio frequency transmyocardial revascularization. Catheterization And Cardiovascular Interventions 2001, 53: 429-434. PMID: 11458429, DOI: 10.1002/ccd.1196.Peer-Reviewed Original Research
2000
Basic FGF reduces stunning via a NOS2-dependent pathway in coronary-perfused mouse hearts
Hampton T, Amende I, Fong J, Laubach V, Li J, Metais C, Simons M. Basic FGF reduces stunning via a NOS2-dependent pathway in coronary-perfused mouse hearts. AJP Heart And Circulatory Physiology 2000, 279: h260-h268. PMID: 10899065, DOI: 10.1152/ajpheart.2000.279.1.h260.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalciumCoronary VesselsEnzyme InhibitorsFemaleFibroblast Growth Factor 2HeartIn Vitro TechniquesLysineMaleMiceMice, Inbred C57BLMice, KnockoutMyocardial IschemiaMyocardial ReperfusionMyocardial StunningNG-Nitroarginine Methyl EsterNitric Oxide SynthaseNitric Oxide Synthase Type IIRecombinant ProteinsConceptsFGF-2Mouse heartsBasic FGFIschemia-reperfusion injuryExpression of NOS2Onset of ischemiaInducible NO synthaseBasic fibroblast growth factorNitric oxide productionNO-selective electrodeFibroblast growth factorLV dysfunctionIschemic contractureVentricular functionLV recoveryNO synthaseIntracellular calciumProtective effectTransgenic heartsOxide productionIschemiaGrowth factorReperfusionSelective inhibitorVehicle controlPR39, a peptide regulator of angiogenesis
Li J, Post M, Volk R, Gao Y, Li M, Metais C, Sato K, Tsai J, Aird W, Rosenberg R, Hampton T, Li J, Sellke F, Carmeliet P, Simons M. PR39, a peptide regulator of angiogenesis. Nature Medicine 2000, 6: 49-55. PMID: 10613823, DOI: 10.1038/71527.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntimicrobial Cationic PeptidesAortaCapillariesCattleCell HypoxiaCells, CulturedCoronary VesselsCysteine EndopeptidasesDNA-Binding ProteinsEndothelium, VascularHeartHumansHypoxia-Inducible Factor 1Hypoxia-Inducible Factor 1, alpha SubunitIn Vitro TechniquesMacrophagesMiceMice, Inbred C57BLMice, TransgenicMultienzyme ComplexesMyocardial InfarctionMyocardial IschemiaNeovascularization, PhysiologicNuclear ProteinsPeptidesProteasome Endopeptidase ComplexRecombinant ProteinsSwineTranscription FactorsUbiquitinsUmbilical VeinsVon Willebrand FactorConceptsHypoxia-inducible factor-1α (HIF-1α) degradationMacrophage-derived peptideHypoxia-inducible factor-1α (HIF-1α) proteinCoronary flow studiesInflammation-induced angiogenesisInduction of angiogenesisMyocardial vasculatureTissue injuryPotent inductorFunctional blood vesselsBlood vesselsVascular structuresAngiogenesisSelective inhibitionPR39
1995
Magnetic resonance mapping demonstrates benefits of VEGF–induced myocardial angiogenesis
Pearlman J, Hibberd M, Chuang M, Harada K, Lopez J, Gladstone S, Friedman M, Sellke F, Simons M. Magnetic resonance mapping demonstrates benefits of VEGF–induced myocardial angiogenesis. Nature Medicine 1995, 1: 1085-1089. PMID: 7489368, DOI: 10.1038/nm1095-1085.Peer-Reviewed Original ResearchConceptsVascular endothelial growth factorMagnetic resonance imagingBlood supplyCoronary occlusive diseasePlacebo-controlled studyCollateral blood supplyBetter ejection fractionCoronary artery occlusionCause of deathCollateral vessel developmentEndothelial growth factorRegional wall thickeningArtery occlusionOcclusive diseaseEjection fractionCollateral vesselsCoronary arteryCollateral developmentIschemic zoneVEGF infusionMyocardial angiogenesisResonance imagingWall thickeningHeart attackPorcine model