2024
A machine learning framework to adjust for learning effects in medical device safety evaluation
Koola J, Ramesh K, Mao J, Ahn M, Davis S, Govindarajulu U, Perkins A, Westerman D, Ssemaganda H, Speroff T, Ohno-Machado L, Ramsay C, Sedrakyan A, Resnic F, Matheny M. A machine learning framework to adjust for learning effects in medical device safety evaluation. Journal Of The American Medical Informatics Association 2024, ocae273. PMID: 39471493, DOI: 10.1093/jamia/ocae273.Peer-Reviewed Original ResearchMachine learning frameworkSynthetic datasetsLearning frameworkMachine learningCapacity of MLLearning effectFeature correlationDepartment of Veterans AffairsSynthetic dataData generationAbsence of learning effectsTraditional statistical methodsML methodsSuperior performanceDatasetSafety signal detectionSignal detectionDevice signalsVeterans AffairsTime-varying covariatesLearningMachinePhysician experienceLimitations of traditional statistical methodsMedical device post-market surveillance
2023
Simulating complex patient populations with hierarchical learning effects to support methods development for post-market surveillance
Davis S, Ssemaganda H, Koola J, Mao J, Westerman D, Speroff T, Govindarajulu U, Ramsay C, Sedrakyan A, Ohno-Machado L, Resnic F, Matheny M. Simulating complex patient populations with hierarchical learning effects to support methods development for post-market surveillance. BMC Medical Research Methodology 2023, 23: 89. PMID: 37041457, PMCID: PMC10088292, DOI: 10.1186/s12874-023-01913-9.Peer-Reviewed Original ResearchConceptsSynthetic datasetsData characteristicsFeature distributionGround truthMIMIC-III dataReal-world dataData generation processComplex simulation studiesData relationshipsUser definitionSmall datasetsSimulation requirementsCorrelated featuresWorld dataCustomizable optionsReal-world complexitySynthetic patientsNew algorithmDatasetGeneration processLearningAlgorithmData simulation techniquesLearning effectGeneralizable framework
2020
EXpectation Propagation LOgistic REgRession on permissioned blockCHAIN (ExplorerChain): decentralized online healthcare/genomics predictive model learning
Kuo T, Gabriel R, Cidambi K, Ohno-Machado L. EXpectation Propagation LOgistic REgRession on permissioned blockCHAIN (ExplorerChain): decentralized online healthcare/genomics predictive model learning. Journal Of The American Medical Informatics Association 2020, 27: 747-756. PMID: 32364235, PMCID: PMC7309256, DOI: 10.1093/jamia/ocaa023.Peer-Reviewed Original ResearchConceptsBlockchain technologyCentral serverServer-based methodBenefits of blockchainData protection policiesCentralized serverArtificial intelligenceModel learningDecentralized approachSmall datasetsBlockchainServerComputation strategySingle pointGeneralizable modelCost of efficiencyGenomic datasetsDatasetDistributed modelTechnologyGenomic dataMultiple institutionsDiscrimination powerIntelligencePotential advantages/disadvantages
2019
Protecting patient privacy in survival analyses
Bonomi L, Jiang X, Ohno-Machado L. Protecting patient privacy in survival analyses. Journal Of The American Medical Informatics Association 2019, 27: 366-375. PMID: 31750926, PMCID: PMC7025359, DOI: 10.1093/jamia/ocz195.Peer-Reviewed Original ResearchConceptsPrivacy protectionPrivacy risksHealthcare applicationsPatient privacyPrivacy protection methodProvable privacy protectionStrong privacy protectionPerson of interestKnowledgeable adversaryDifferential privacySynthetic datasetsFormal modelEpidemiology datasetPrivacyNonparametric survival modelFuture research directionsAdversaryResearch directionsDatasetBiomedical research applicationsFrameworkFrequent sharingResearch applicationsApplicationsSharingSecure and Differentially Private Logistic Regression for Horizontally Distributed Data
Kim M, Lee J, Ohno-Machado L, Jiang X. Secure and Differentially Private Logistic Regression for Horizontally Distributed Data. IEEE Transactions On Information Forensics And Security 2019, 15: 695-710. DOI: 10.1109/tifs.2019.2925496.Peer-Reviewed Original ResearchPrivacy-preserving modelHomomorphic encryption techniqueDifferential privacy methodReal-world datasetsPrivacy methodsPrivate dataSensitive dataEncryption techniqueSecurity methodsDifferential privacyInformation leakageNaive solutionPrivacyNatural wayGood accuracyScientific collaborationData analysisEncouraging resultsMajor concernSecurityDatasetPotential leakageComputationScenariosPracticabilityEvaluating and sharing global genetic ancestry in biomedical datasets
Harismendy O, Kim J, Xu X, Ohno-Machado L. Evaluating and sharing global genetic ancestry in biomedical datasets. Journal Of The American Medical Informatics Association 2019, 26: 457-461. PMID: 30869786, PMCID: PMC6433181, DOI: 10.1093/jamia/ocy194.Peer-Reviewed Original ResearchConceptsGenetic diversity measurementsGenetic ancestryAvailable molecular datasetsHuman genetics researchCancer Genome Atlas (TCGA) datasetContinental resolutionGenetic diversityPhenotype-genotype associationsMolecular datasetsGlobal genetic ancestryAncestry informationGenetic researchAtlas datasetDiversity measurementsAncestryTraitsGlobal scaleDiversityBiomedical datasetsAvailable datasetsData repositoryDisease riskAccess datasetDatasetAvailable cohorts
2018
A Scalable Privacy-preserving Data Generation Methodology for Exploratory Analysis.
Vaidya J, Shafiq B, Asani M, Adam N, Jiang X, Ohno-Machado L. A Scalable Privacy-preserving Data Generation Methodology for Exploratory Analysis. AMIA Annual Symposium Proceedings 2018, 2017: 1695-1704. PMID: 29854240, PMCID: PMC5977652.Peer-Reviewed Original ResearchConceptsPrivacy-preserving approachData management systemBig dataBiomedical datasetsClassification taskBiomedical dataContext of regressionManagement systemSynthetic dataGeneration methodologyEssential problemResearch tasksAdditional datasetsDatasetTaskSignificant effortsDirect accessFirstorder approximationDataParticular typeAccessPrecision medicine
2017
DATS, the data tag suite to enable discoverability of datasets
Sansone S, Gonzalez-Beltran A, Rocca-Serra P, Alter G, Grethe J, Xu H, Fore I, Lyle J, Gururaj A, Chen X, Kim H, Zong N, Li Y, Liu R, Ozyurt I, Ohno-Machado L. DATS, the data tag suite to enable discoverability of datasets. Scientific Data 2017, 4: 170059. PMID: 28585923, PMCID: PMC5460592, DOI: 10.1038/sdata.2017.59.Peer-Reviewed Original ResearchDeveloping a framework for digital objects in the Big Data to Knowledge (BD2K) commons: Report from the Commons Framework Pilots workshop
Jagodnik K, Koplev S, Jenkins S, Ohno-Machado L, Paten B, Schurer S, Dumontier M, Verborgh R, Bui A, Ping P, McKenna N, Madduri R, Pillai A, Ma'ayan A. Developing a framework for digital objects in the Big Data to Knowledge (BD2K) commons: Report from the Commons Framework Pilots workshop. Journal Of Biomedical Informatics 2017, 71: 49-57. PMID: 28501646, PMCID: PMC5545976, DOI: 10.1016/j.jbi.2017.05.006.Peer-Reviewed Original ResearchConceptsBig dataDigital objectsBig data scienceNIH Big DataDiversity of dataComputational infrastructureData scienceData sharingVirtual environmentSecure processK frameworkDiverse datasetsKnowledge initiativesKnowledge commonsSuch dataBiomedical researchObjectsInteroperabilityFrameworkDiscoverabilityRecent yearsSharingDatasetInfrastructurePilot projectInformation retrieval for biomedical datasets: the 2016 bioCADDIE dataset retrieval challenge
Roberts K, Gururaj A, Chen X, Pournejati S, Hersh W, Demner-Fushman D, Ohno-Machado L, Cohen T, Xu H. Information retrieval for biomedical datasets: the 2016 bioCADDIE dataset retrieval challenge. Database 2017, 2017: bax068. DOI: 10.1093/database/bax068.Peer-Reviewed Original ResearchBiomedical datasetsRetrieval challengesInformation retrieval techniquesAdvanced query processingBiomedical data repositoriesAdvanced retrieval methodsQuery processingInformation retrievalTest queriesRetrieval systemRank frameworkRetrieval approachRetrieval techniquesData repositoryRetrieval methodTop precisionDatasetQueriesRepositoryChallengesRetrievalTaskLearningSystemCorpus
2014
Choosing blindly but wisely: differentially private solicitation of DNA datasets for disease marker discovery
Zhao Y, Wang X, Jiang X, Ohno-Machado L, Tang H. Choosing blindly but wisely: differentially private solicitation of DNA datasets for disease marker discovery. Journal Of The American Medical Informatics Association 2014, 22: 100-108. PMID: 25352565, PMCID: PMC4433380, DOI: 10.1136/amiajnl-2014-003043.Peer-Reviewed Original ResearchConceptsData ownersData usersHuman genomic datasetsHuman genomic dataPatient privacyPrivacyGeneration approachUsersData selectionReal dataDatasetGenomic datasetsPrivate solicitationDNA datasetsScientific discoveryNew approachGenomic dataHigh confidencePilot versionEvaluation methodRight choiceOwnersAlgorithmNew techniqueDisease marker discovery
2013
WebGLORE: a Web service for Grid LOgistic REgression
Jiang W, Li P, Wang S, Wu Y, Xue M, Ohno-Machado L, Jiang X. WebGLORE: a Web service for Grid LOgistic REgression. Bioinformatics 2013, 29: 3238-3240. PMID: 24072732, PMCID: PMC3842761, DOI: 10.1093/bioinformatics/btt559.Peer-Reviewed Original ResearchConceptsWeb servicesHypertext Transfer Protocol SecurePrivacy-preserving constructionFree Software FoundationGNU General Public LicenseUse web serviceFree web serviceGeneral Public LicenseDistributed datasetsTrusted serverProtocol SecureSoftware FoundationPublic LicensePHP technologyInformation exchangeBiomedical researchersLocal statisticsServicesServletsServerSecureAjaxGlobal logistic regression modelDatasetGlobal modelDetecting inappropriate access to electronic health records using collaborative filtering
Menon A, Jiang X, Kim J, Vaidya J, Ohno-Machado L. Detecting inappropriate access to electronic health records using collaborative filtering. Machine Learning 2013, 95: 87-101. PMID: 24683293, PMCID: PMC3967851, DOI: 10.1007/s10994-013-5376-1.Peer-Reviewed Original ResearchElectronic health recordsCollaborative filteringInappropriate accessHealth recordsSuspicious accessPrivacy policiesAccess patternsMachine learningManual auditingSecurity expertsLatent featuresAccess dataRecord accessHistorical dataSecurityFilteringUnrestricted accessFuture violationsAccessAudit processSVMUsersDatasetLearningAuditing
2005
Small, fuzzy and interpretable gene expression based classifiers
Vinterbo S, Kim E, Ohno-Machado L. Small, fuzzy and interpretable gene expression based classifiers. Bioinformatics 2005, 21: 1964-1970. PMID: 15661797, DOI: 10.1093/bioinformatics/bti287.Peer-Reviewed Original Research
1998
Building manageable rough set classifiers.
Ohrn A, Ohno-Machado L, Rowland T. Building manageable rough set classifiers. AMIA Annual Symposium Proceedings 1998, 543-7. PMID: 9929278, PMCID: PMC2232320.Peer-Reviewed Original ResearchConceptsReal-world medical datasetsRule-based classifierRough set classifierRough set theoryKnowledge discoveryData miningMedical datasetsBoolean reasoningSet classifierSet theoryClassifierBetter performanceSmall modelsMiningAvailable informationDatasetReasoningInteresting aspectsModelCapabilityInformationSetInspectionRulesPerformance