2016
Epicutaneous immunization with ovalbumin and CpG induces TH1/TH17 cytokines, which regulate IgE and IgG2a production
Majewska-Szczepanik M, Askenase PW, Lobo FM, Marcińska K, Wen L, Szczepanik M. Epicutaneous immunization with ovalbumin and CpG induces TH1/TH17 cytokines, which regulate IgE and IgG2a production. Journal Of Allergy And Clinical Immunology 2016, 138: 262-273.e6. PMID: 26810716, PMCID: PMC5278675, DOI: 10.1016/j.jaci.2015.11.018.Peer-Reviewed Original ResearchConceptsSubcutaneous allergen-specific immunotherapyOVA-specific IgEEpicutaneous immunizationAllergen-specific immunotherapyAntigen-specific mannerT cell receptorAllergic diseasesToll-like receptor 9 agonistMyeloid differentiation primary response 88Differentiation primary response 88Course of allergyIL-17A dependentTolerability of immunotherapyLong-term remissionTH1/TH17 cytokinesReceptor 9 agonistAdoptive cell transferEosinophil peroxidase activityEpicutaneous treatmentRegulatory cellsTh17 cytokinesAtopic dermatitisIL-10IgG2a productionIgE synthesis
2014
Epicutaneous Immunization with TNP-Ig and Zymosan Induces TCRαβ+ CD4+ Contrasuppressor Cells That Reverse Skin-Induced Suppression via IL-17A
Majewska-Szczepanik M, Strzepa A, Marcińska K, Wen L, Szczepanik M. Epicutaneous Immunization with TNP-Ig and Zymosan Induces TCRαβ+ CD4+ Contrasuppressor Cells That Reverse Skin-Induced Suppression via IL-17A. International Archives Of Allergy And Immunology 2014, 164: 122-136. PMID: 24993442, PMCID: PMC4141016, DOI: 10.1159/000363446.Peer-Reviewed Original ResearchMeSH KeywordsAdministration, CutaneousAnimalsAntigensCD4-Positive T-LymphocytesDermatitis, ContactHaptensImmunity, InnateImmunizationImmunoglobulinsImmunosuppression TherapyInterleukin-17Lymph NodesMiceMice, Inbred C57BLMice, Inbred CBAMyeloid Differentiation Factor 88Receptors, Antigen, T-Cell, alpha-betaSkinToll-Like Receptor 2Transforming Growth Factor betaTrinitrobenzenesVaccinationZymosanConceptsSkin-induced suppressionSuppression of CHSContact hypersensitivityEC immunizationEpicutaneous immunizationTNP-IgAdoptive cell transfer experimentsProtein antigensT contrasuppressor cellsT suppressor cellsLymph node cellsCell transfer experimentsCHS responseContrasuppressor cellsIL-17ASuppressor cellsCytokine productionNode cellsImmunogenic antigensPresence of zymosanAntigen E.ImmunizationInnate immunityCD4Gauze patchesLong term effect of gut microbiota transfer on diabetes development
Peng J, Narasimhan S, Marchesi JR, Benson A, Wong FS, Wen L. Long term effect of gut microbiota transfer on diabetes development. Journal Of Autoimmunity 2014, 53: 85-94. PMID: 24767831, PMCID: PMC4361177, DOI: 10.1016/j.jaut.2014.03.005.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacteriaDiabetes Mellitus, ExperimentalIntestinesMiceMice, Inbred NODMice, KnockoutMicrobiotaMyeloid Differentiation Factor 88ProbioticsConceptsNOD miceGut microbiotaWild-type NOD miceNon-obese diabetic (NOD) miceGut microbiomeMyD88-deficient miceMucosal immune systemOnset of diabetesCD8αβ T cellsType 1 diabetesGut microbiota transferWeeks of ageAutoimmune diabetesT1D developmentDiabetes developmentDiabetic miceMicrobiota transferT cellsLamina propriaLong-term effectsProbiotic treatmentImmune systemLarge intestineDiabetesMice
2012
TLR4 regulates cardiac lipid accumulation and diabetic heart disease in the nonobese diabetic mouse model of type 1 diabetes
Dong B, Qi D, Yang L, Huang Y, Xiao X, Tai N, Wen L, Wong F. TLR4 regulates cardiac lipid accumulation and diabetic heart disease in the nonobese diabetic mouse model of type 1 diabetes. AJP Heart And Circulatory Physiology 2012, 303: h732-h742. PMID: 22842069, PMCID: PMC3468457, DOI: 10.1152/ajpheart.00948.2011.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsBlood GlucoseCell LineDiabetes Mellitus, Type 1Diabetic CardiomyopathiesDisease Models, AnimalFatty Acids, NonesterifiedJNK Mitogen-Activated Protein KinasesLipid MetabolismLipoprotein LipaseMiceMice, Inbred C57BLMice, Inbred NODMice, KnockoutMyeloid Differentiation Factor 88MyocardiumMyocytes, CardiacOleic AcidP38 Mitogen-Activated Protein KinasesPhosphorylationRatsRNA InterferenceTime FactorsToll-Like Receptor 4TriglyceridesConceptsDiabetic heart diseaseType 1 diabetesHeart diseaseNOD animalsLipoprotein lipaseLipid accumulationNonobese diabetic (NOD) mouse modelLeft ventricular developed pressureCardiac fatty acid metabolismMyeloid differentiation primary response geneCardiac lipid accumulationControl nondiabetic miceGreater ejection fractionRole of TLR4Nonobese diabetic (NOD) miceOnset of diabetesVentricular developed pressureDevelopment of diabetesToll-like receptorsGreater fractional shorteningDiabetic mouse modelPlasma triglyceride levelsWild-type NODLower triglyceride accumulationCellular lipid accumulation
2011
Insulinoma-Released Exosomes or Microparticles Are Immunostimulatory and Can Activate Autoreactive T Cells Spontaneously Developed in Nonobese Diabetic Mice
Sheng H, Hassanali S, Nugent C, Wen L, Hamilton-Williams E, Dias P, Dai Y. Insulinoma-Released Exosomes or Microparticles Are Immunostimulatory and Can Activate Autoreactive T Cells Spontaneously Developed in Nonobese Diabetic Mice. The Journal Of Immunology 2011, 187: 1591-1600. PMID: 21734072, PMCID: PMC3150365, DOI: 10.4049/jimmunol.1100231.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigen-Presenting CellsCell Line, TumorCell-Derived MicroparticlesDiabetes Mellitus, ExperimentalDiabetes Mellitus, Type 1ExosomesFemaleHumansInsulinomaInsulin-Secreting CellsLymphocyte ActivationMaleMiceMice, Inbred NODMice, SCIDMyeloid Differentiation Factor 88Sex CharacteristicsTh1 CellsConceptsAutoreactive T cellsNOD miceAutoimmune targetT cellsCongenic miceNonobese diabetes-resistant miceHuman type 1 diabetesAg-specific immune responsesPrediabetic NOD micePancreatic lymph nodesNonobese diabetic (NOD) miceT cell responsesDiabetes-resistant miceAge-matched malesType 1 diabetesMyD88-dependent pathwayT cell proliferationResistant congenic miceInsulitis developmentPrediabetic NODInnate stimuliIslet destructionLymph nodesNOD femalesAutoimmune response
2008
Innate immunity and intestinal microbiota in the development of Type 1 diabetes
Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008, 455: 1109-1113. PMID: 18806780, PMCID: PMC2574766, DOI: 10.1038/nature07336.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacteriaCD8-Positive T-LymphocytesDiabetes Mellitus, Type 1FemaleImmunity, InnateInterferon-gammaIntestinesIslets of LangerhansMaleMiceMice, Inbred NODMice, KnockoutMice, SCIDMolecular Sequence DataMyeloid Differentiation Factor 88PhylogenySpecific Pathogen-Free OrganismsTime FactorsConceptsType 1 diabetesNOD miceInnate immunityRapid innate immune responseDevelopment of diabetesNormal human gutInnate immune responseAdaptor protein MyD88Autoimmune diabetesTherapeutic optionsImmune responseNegative miceIntestinal microbiotaProtein MyD88DiabetesMiceGut microbesImmunityHuman gutMicrobial productsMyD88Influence predispositionIncidence