2025
Effect of AlN interlayer thickness on thermal conductances of GaN epilayer and GaN/SiC interface in GaN-on-SiC heterostructures
Wang L, Zhang Z, Su X, Zhou J, Chen J, Li Z, Chang G, Xia S, Yin T, Niu M, Zhu J, Tang D, Xu K. Effect of AlN interlayer thickness on thermal conductances of GaN epilayer and GaN/SiC interface in GaN-on-SiC heterostructures. Applied Surface Science 2025, 686: 162106. DOI: 10.1016/j.apsusc.2024.162106.Peer-Reviewed Original ResearchHigh electron mobility transistorsAlN interlayer thicknessGaN-on-SiCGaN epilayersAlN interlayerPhonon density of statesHeteroepitaxial growth of GaNDensity of statesAtomically smooth interfaceThermal conductivityElectron mobility transistorsTime-domain thermoreflectanceMultilayer structureEnhancement of G′Growth of GaNInterfacial thermal conductanceInterlayer thicknessMetal organic chemical vapor depositionSiC substrateMobility transistorsAlN bufferGrow GaNChemical vapor depositionIsland shapeGaN
2024
Study on Raman scattering spectroscopy of Mn-doped GaN grown by the ammonothermal method
Lu W, Li T, Ren G, Xia Z, Xie K, Li S, Shen L, Xu K. Study on Raman scattering spectroscopy of Mn-doped GaN grown by the ammonothermal method. CrystEngComm 2024, 26: 2166-2171. DOI: 10.1039/d4ce00093e.Peer-Reviewed Original ResearchRaman scattering spectroscopyValence stateGlow discharge mass spectrometryValence state of MnAmmonothermal methodX-ray photoelectron spectroscopyStates of MnGaN crystalsDoping of MnInteraction potential energyRaman scattering spectraDoping of MgPhotoelectron spectroscopyMn 2+Mn-doped GaNMass spectrometryMn 3X-rayScattering spectroscopyCrystalUnintentional dopingSpectroscopyPotential energyValenceGaNMicrostructural and spectroscopic analysis of epitaxial lateral overgrowth GaN via the self-decomposing hexagonal graphene mask
Tao J, Xu Y, Li J, Cai X, Wang Y, Wang G, Cao B, Xu K. Microstructural and spectroscopic analysis of epitaxial lateral overgrowth GaN via the self-decomposing hexagonal graphene mask. Japanese Journal Of Applied Physics 2024, 63: 025503. DOI: 10.35848/1347-4065/ad1e88.Peer-Reviewed Original ResearchGraphene maskEpitaxial lateral overgrowth-GaNEpitaxial lateral overgrowthTwo-dimensional materialsGrowth of GaNHigh-quality GaNHexagonal grapheneELOG GaNGaN growth processGraphene surfaceThreading dislocation densityLattice mismatchGrapheneGaNLateral overgrowthPL spectraHeterogeneous substratesDislocation densityRelaxationGaN.Growth processStress relaxationSpectraNitrideGPa
2023
Epitaxial Growth of High-Quality GaN Films Based on Bilayer Graphene
Zhou J, Xu Y, Wang X, Wang Y, Yue L, Wang J, Cao B, Xu K. Epitaxial Growth of High-Quality GaN Films Based on Bilayer Graphene. 2023, 00: 161-164. DOI: 10.1109/sslchinaifws60785.2023.10399753.Peer-Reviewed Original ResearchGaN filmsAlN/sapphire templatesEpitaxial GaN thin filmsGrowth of GaN filmsGrowth of high-quality GaN filmsGaN thin filmsHigh-quality GaN filmsEpitaxial growthOptoelectronic devicesHigh-performance devicesNucleation layerGrapheneAlN/sapphireFlexible optoelectronic devicesThin filmsFilm formation processGaNFilm stressDislocation densitySurface roughnessFilmsFormation processEpitaxyGrowth conditionsBilayerDefect evolution in GaN thin film heterogeneously integrated with CMOS-compatible Si(100) substrate by ion-cutting technology
Shi H, Yi A, Ding J, Liu X, Qin Q, Yi J, Hu J, Wang M, Cai D, Wang J, Xu K, Mu F, Suga T, Heller R, Wang M, Zhou S, Xu W, Huang K, You T, Ou X. Defect evolution in GaN thin film heterogeneously integrated with CMOS-compatible Si(100) substrate by ion-cutting technology. Science China Information Sciences 2023, 66: 219403. DOI: 10.1007/s11432-022-3668-0.Peer-Reviewed Original Research