2023
Multi-Task Deep Learning and Uncertainty Estimation for Pet Head Motion Correction
Lieffrig E, Zeng T, Zhang J, Fontaine K, Fang X, Revilla E, Lu Y, Onofrey J. Multi-Task Deep Learning and Uncertainty Estimation for Pet Head Motion Correction. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2023, 00: 1-5. PMID: 38111738, PMCID: PMC10725741, DOI: 10.1109/isbi53787.2023.10230791.Peer-Reviewed Original ResearchMulti-task deep learningMulti-task architectureMonte Carlo dropoutTesting subjectsDeep learningMotion tracking deviceSupervised learningMotion correction methodNetwork predictionHead motion correctionAppearance predictionReconstructed imagesPrediction performanceImage acquisitionImage qualityTracking deviceMotion correctionLearning processUncertainty estimationTomography image acquisitionHead motionPrediction uncertaintyLearningQualitative resultsArchitecture
2022
An objective evaluation method for head motion estimation in PET—Motion corrected centroid-of-distribution
Sun C, Revilla EM, Zhang J, Fontaine K, Toyonaga T, Gallezot JD, Mulnix T, Onofrey JA, Carson RE, Lu Y. An objective evaluation method for head motion estimation in PET—Motion corrected centroid-of-distribution. NeuroImage 2022, 264: 119678. PMID: 36261057, DOI: 10.1016/j.neuroimage.2022.119678.Peer-Reviewed Original ResearchConceptsMotion informationHardware-based methodsHead motion estimationPET image reconstructionMotion estimation methodData-driven methodPET raw dataHead motionMask segmentationFinal image qualityMotion estimationTracking hardwareDifferent motion estimation methodsBrain PET studiesGround truthImage reconstructionRaw dataNew algorithmObjective quality controlInaccurate motion informationImage qualityMotion correction algorithmAlgorithmMotion errorsCorrection algorithmAdaptive data-driven motion detection and optimized correction for brain PET
Revilla EM, Gallezot JD, Naganawa M, Toyonaga T, Fontaine K, Mulnix T, Onofrey JA, Carson RE, Lu Y. Adaptive data-driven motion detection and optimized correction for brain PET. NeuroImage 2022, 252: 119031. PMID: 35257856, PMCID: PMC9206767, DOI: 10.1016/j.neuroimage.2022.119031.Peer-Reviewed Original ResearchConceptsDetection algorithmMotion correction methodMotion tracking informationExternal motion tracking devicesMotion detection algorithmMotion tracking methodImage registration algorithmHead motionReal human datasetsData-driven methodUser-defined parametersImage quality degradationMotion tracking deviceMultiple usersDynamic datasetsTracking informationManual interventionRegistration algorithmMotion detectionTracking methodComparable performanceAlgorithmQuality degradationHuman datasetsTracking device
2020
Data-Driven Motion Detection and Event-by-Event Correction for Brain PET: Comparison with Vicra
Lu Y, Naganawa M, Toyonaga T, Gallezot JD, Fontaine K, Ren S, Revilla EM, Mulnix T, Carson RE. Data-Driven Motion Detection and Event-by-Event Correction for Brain PET: Comparison with Vicra. Journal Of Nuclear Medicine 2020, 61: 1397-1403. PMID: 32005770, PMCID: PMC7456171, DOI: 10.2967/jnumed.119.235515.Peer-Reviewed Original ResearchConceptsData-driven algorithmMotion correction methodMotion tracking informationHead motionCentroid of distributionMotion-compensated reconstructionLarge head motionsMotion correction frameworkUser-defined thresholdPET raw dataDynamic datasetsTracking informationImage registrationMotion detectionRaw dataSuch time pointsImage qualityBetter performanceMotion correctionAlgorithmLine of responseCorrection frameworkBrain PET studiesCentral coordinatesTracer kinetic modeling