Artificial-Intelligence, Data-Driven, Comprehensive Classification of Myeloid Neoplasms Based on Genomic, Morphological and Histological Features
Lanino L, D'Amico S, Maggioni G, Al Ali N, Wang Y, Gurnari C, Gagelmann N, Bewersdorf J, Ball S, Guglielmelli P, Meggendorfer M, Hunter A, Kubasch A, Travaglino E, Campagna A, Ubezio M, Russo A, Todisco G, Tentori C, Buizza A, Sauta E, Zampini M, Riva E, Asti G, Delleani M, Ficara F, Santoro A, Sala C, Dall'Olio D, Dall'Olio L, Kewan T, Casetti I, Awada H, Xicoy B, Vucinic V, Hou H, Chou W, Yao C, Lin C, Tien H, Consagra A, Sallman D, Kern W, Bernardi M, Chiusolo P, Borin L, Voso M, Pleyer L, Palomo L, Quintela D, Jerez A, Cornejo E, Martin P, Díaz-Beyá M, Pita A, Roldan V, Suarez D, Velasco E, Calabuig M, Garcia-Manero G, Loghavi S, Platzbecker U, Sole F, Diez-Campelo M, Maciejewski J, Kröger N, Fenaux P, Fontenay M, Santini V, Haferlach T, Germing U, Padron E, Robin M, Passamonti F, Solary E, Vannucchi A, Castellani G, Zeidan A, Komrokji R, Della Porta M. Artificial-Intelligence, Data-Driven, Comprehensive Classification of Myeloid Neoplasms Based on Genomic, Morphological and Histological Features. Blood 2024, 144: 1005. DOI: 10.1182/blood-2024-204826.Peer-Reviewed Original ResearchGenomic featuresSplicing mutationBiallelic inactivationAnalysis of genomic profilesBiallelic inactivation of TP53Clinical phenotypeGene expression profilesCNV analysisMorphological featuresInactivation of TP53Myeloid neoplasmsGenomic characterizationRNAseq dataMorphological dataMutation screeningExpression profilesMutationsJAK/STATGenomic profilingGenomeHierarchical importanceHeterogeneous phenotypesIntegrated analysisPhenotypeHematological phenotypeData-driven, harmonised classification system for myelodysplastic syndromes: a consensus paper from the International Consortium for Myelodysplastic Syndromes
Komrokji R, Lanino L, Ball S, Bewersdorf J, Marchetti M, Maggioni G, Travaglino E, Al Ali N, Fenaux P, Platzbecker U, Santini V, Diez-Campelo M, Singh A, Jain A, Aguirre L, Tinsley-Vance S, Schwabkey Z, Chan O, Xie Z, Brunner A, Kuykendall A, Bennett J, Buckstein R, Bejar R, Carraway H, DeZern A, Griffiths E, Halene S, Hasserjian R, Lancet J, List A, Loghavi S, Odenike O, Padron E, Patnaik M, Roboz G, Stahl M, Sekeres M, Steensma D, Savona M, Taylor J, Xu M, Sweet K, Sallman D, Nimer S, Hourigan C, Wei A, Sauta E, D’Amico S, Asti G, Castellani G, Delleani M, Campagna A, Borate U, Sanz G, Efficace F, Gore S, Kim T, Daver N, Garcia-Manero G, Rozman M, Orfao A, Wang A, Foucar M, Germing U, Haferlach T, Scheinberg P, Miyazaki Y, Iastrebner M, Kulasekararaj A, Cluzeau T, Kordasti S, van de Loosdrecht A, Ades L, Zeidan A, Della Porta M, Syndromes I. Data-driven, harmonised classification system for myelodysplastic syndromes: a consensus paper from the International Consortium for Myelodysplastic Syndromes. The Lancet Haematology 2024, 11: e862-e872. PMID: 39393368, DOI: 10.1016/s2352-3026(24)00251-5.Peer-Reviewed Original ResearchGenomic featuresData-driven approachTP53 inactivationGenomic heterogeneityEntity labelsGenetic featuresDel(7q)/-7Myelodysplastic syndromeGenomic profilingData scientistsMutated SF3B1Cluster assignmentComplex karyotypeRUNX1 mutationsModified Delphi consensus processDel(5qIsolated del(5qAcute myeloid leukemiaData-drivenDelphi consensus processMarrow blasts