2024
A Study of Biomedical Relation Extraction Using GPT Models.
Zhang J, Wibert M, Zhou H, Peng X, Chen Q, Keloth V, Hu Y, Zhang R, Xu H, Raja K. A Study of Biomedical Relation Extraction Using GPT Models. AMIA Joint Summits On Translational Science Proceedings 2024, 2024: 391-400. PMID: 38827097, PMCID: PMC11141827.Peer-Reviewed Original Research
2022
Discovering novel drug-supplement interactions using SuppKG generated from the biomedical literature
Schutte D, Vasilakes J, Bompelli A, Zhou Y, Fiszman M, Xu H, Kilicoglu H, Bishop J, Adam T, Zhang R. Discovering novel drug-supplement interactions using SuppKG generated from the biomedical literature. Journal Of Biomedical Informatics 2022, 131: 104120. PMID: 35709900, PMCID: PMC9335448, DOI: 10.1016/j.jbi.2022.104120.Peer-Reviewed Original ResearchConceptsUnified Medical Language SystemComprehensive knowledge graphDomain terminologyKnowledge graphSemantic relationsNatural language processing technologyLanguage processing technologyNLP toolsDownstream tasksF1 scoreSemantic relationshipsDiscovery patternsPubMed abstractsLimited coverageBiomedical literatureProcessing technologyLanguage systemSemRepDietary supplement informationManual reviewNovel methodologyGraphNodesDomainTask
2015
A Study of Neural Word Embeddings for Named Entity Recognition in Clinical Text.
Wu Y, Xu J, Jiang M, Zhang Y, Xu H. A Study of Neural Word Embeddings for Named Entity Recognition in Clinical Text. AMIA Annual Symposium Proceedings 2015, 2015: 1326-33. PMID: 26958273, PMCID: PMC4765694.Peer-Reviewed Original ResearchConceptsNamed Entity RecognitionClinical NER systemNeural word embeddingsClinical Named Entity RecognitionWord embeddingsNER systemWord representationsI2b2 dataEntity recognitionEmbedding featuresClinical textNatural language processing researchConditional Random FieldsLanguage processing researchWord embedding featuresLarge unlabeled corpusBrown clustersNeural wordImportant patient informationFeature representationF1 scoreIntelligent monitoringCritical taskUnlabeled corpusSemantic relations