1995
Nitroprusside Inhibition of Platelet Function Is Transient and Reversible by Catecholamine Priming
Harris S, Rinder C, Rinder H, Tracey J, Smith B, Hines R. Nitroprusside Inhibition of Platelet Function Is Transient and Reversible by Catecholamine Priming. Anesthesiology 1995, 83: 1145-1152.. PMID: 8533905, DOI: 10.1097/00000542-199512000-00003.Peer-Reviewed Original ResearchConceptsAlpha-granule releaseSodium nitroprusside infusionSodium nitroprussidePlatelet functionNitroprusside infusionPlatelet aggregationSodium nitroprusside administrationP-selectin expressionPlatelet-rich plasmaMeasures of plateletIntravenous crystalloidImpaired coagulationNitroprusside administrationAntiplatelet effectEpinephrine pretreatmentNormal volunteersVivo findingsHuman volunteersNitroprussideVivo inhibitionVitro inhibitionInhibitory effectSignificant inhibitionRapid reversibilityTime course
1993
Aspirin does not inhibit adenosine diphosphate-induced platelet alpha- granule release
Rinder C, Student L, Bonan J, Rinder H, Smith B. Aspirin does not inhibit adenosine diphosphate-induced platelet alpha- granule release. Blood 1993, 82: 505-512. DOI: 10.1182/blood.v82.2.505.bloodjournal822505.Peer-Reviewed Original ResearchP-selectin expressionAlpha-granule secretionPlatelet alpha-granule secretionAspirin treatmentP-selectinGranule secretionPlatelet alpha-granule releaseArachidonic acidCyclooxygenase-dependent metabolitesPlatelet surface expressionPlatelet dense granule secretionAlpha-granule releaseDense granule secretionPolymorphonuclear lymphocytesAmiloride treatmentLipoxygenase inhibitorsAspirinSecretionWhole bloodPlatelet-platelet interactionsTreatmentInvolvement of metabolitesPlateletsExpressionADPAspirin Does Not Inhibit Adenosine Diphosphate-Induced Platelet α-Granule Release
Rinder C, Student L, Bonan J, Rinder H, Smith B. Aspirin Does Not Inhibit Adenosine Diphosphate-Induced Platelet α-Granule Release. Blood 1993, 82: 505-512. PMID: 7687162, DOI: 10.1182/blood.v82.2.505.505.Peer-Reviewed Original ResearchConceptsP-selectin expressionAlpha-granule secretionPlatelet alpha-granule secretionAspirin treatmentP-selectinGranule secretionPlatelet alpha-granule releaseArachidonic acidCyclooxygenase-dependent metabolitesPlatelet surface expressionPlatelet α-granule releasePlatelet dense granule secretionAlpha-granule releaseΑ-granule releaseDense granule secretionPolymorphonuclear lymphocytesAmiloride treatmentLipoxygenase inhibitorsAspirinSecretionWhole bloodPlatelet-platelet interactionsTreatmentInvolvement of metabolitesPlatelets
1992
Cardiopulmonary Bypass Induces Leukocyte-Platelet Adhesion
Rinder C, Bonan J, Rinder H, Mathew J, Hines R, Smith B. Cardiopulmonary Bypass Induces Leukocyte-Platelet Adhesion. Blood 1992, 79: 1201-1205. PMID: 1371416, DOI: 10.1182/blood.v79.5.1201.1201.Peer-Reviewed Original ResearchConceptsLeukocyte-platelet conjugatesCardiopulmonary bypassMonocyte-platelet conjugatesEnd of CPBStart of CPBActivation of monocytesAlpha-granule releaseGMP-140 expressionGranule membrane protein-140Time courseLeukocyte-platelet adhesionCD11b expressionMonocyte activationSurface CD11bWhole bloodGMP-140Surface expressionProtein 140Increased numberCD11bBypassMonocytesPlateletsPlatelet adhesionConjugatesCardiopulmonary bypass induces leukocyte-platelet adhesion
Rinder C, Bonan J, Rinder H, Mathew J, Hines R, Smith B. Cardiopulmonary bypass induces leukocyte-platelet adhesion. Blood 1992, 79: 1201-1205. DOI: 10.1182/blood.v79.5.1201.bloodjournal7951201.Peer-Reviewed Original ResearchLeukocyte-platelet conjugatesCardiopulmonary bypassMonocyte-platelet conjugatesEnd of CPBStart of CPBActivation of monocytesAlpha-granule releaseGMP-140 expressionGranule membrane protein-140Time courseLeukocyte-platelet adhesionCD11b expressionMonocyte activationSurface CD11bWhole bloodGMP-140Surface expressionProtein 140Increased numberCD11bBypassMonocytesPlateletsPlatelet adhesionConjugates
1991
Modulation of Platelet Surface Adhesion Receptors during Cardiopulmonary Bypass
Rinder C, Mathew J, Rinder H, Bonan J, Ault K, Smith B. Modulation of Platelet Surface Adhesion Receptors during Cardiopulmonary Bypass. Anesthesiology 1991, 75: 563-570. PMID: 1718190, DOI: 10.1097/00000542-199110000-00004.Peer-Reviewed Original ResearchConceptsIIb/IIIaCardiopulmonary bypassGlycoprotein IIb/IIIaPlatelet activationQualitative platelet defectsGlycoprotein IVGlycoprotein IbAlpha-granule releaseGranule membrane protein-140Surface glycoprotein IbHLA APlatelet functionBaseline valuesVon Willebrand factor receptorBypassThrombospondin receptorGlycoprotein Ib expressionFlow cytometryIb expressionPlatelet defectsSelective decreasePlatelet receptorsFactor receptorReceptorsProtein 140Platelet Activation and Aggregation during Cardiopulmonary Bypass
Rinder C, Bohnert J, Rinder H, Mitchell J, Ault K, Hillman R. Platelet Activation and Aggregation during Cardiopulmonary Bypass. Anesthesiology 1991, 75: 388-393. PMID: 1716077, DOI: 10.1097/00000542-199109000-00002.Peer-Reviewed Original ResearchConceptsCardiopulmonary bypassPlatelet activationPlatelet aggregationExtracorporeal circulationEarly postoperative periodAlpha-granule releaseGMP-140 expressionPlatelet factor 4Granule membrane protein-140Alpha-granule membrane proteinPlatelet surface membranePostoperative periodPlatelet dysfunctionPlasma concentrationsIndividual patientsBypassFlow cytometryPlatelet defectsGranule productsMonoclonal antibodiesProtein 140Factor 4PlateletsPatientsAggregation defect