2024
A confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer’s disease using resting-state functional network connectivity
Hassanzadeh R, Abrol A, Pearlson G, Turner J, Calhoun V. A confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer’s disease using resting-state functional network connectivity. PLOS ONE 2024, 19: e0293053. PMID: 38768123, PMCID: PMC11104643, DOI: 10.1371/journal.pone.0293053.Peer-Reviewed Original ResearchConceptsResting-state functional network connectivityFunctional network connectivityResting-state functional magnetic resonance imagingFunctional magnetic resonance imagingAlzheimer's diseaseClassification of schizophreniaNetwork pairsPatients to healthy controlsSchizophrenia patientsNeurobiological mechanismsSZ patientsSubcortical networksCerebellum networkSchizophreniaRs-fMRIDisorder developmentMotor networkCompare patient groupsSubcortical domainSZ disorderHealthy controlsMagnetic resonance imagingDisordersNetwork connectivityFunctional abnormalities
2015
Classification of Schizophrenia and Bipolar Patients Using Static and Time-Varying Resting-State FMRI Brain Connectivity
Rashid B, Arbabshirani M, Damaraju E, Millar R, Cetin M, Pearlson G, Calhoun V. Classification of Schizophrenia and Bipolar Patients Using Static and Time-Varying Resting-State FMRI Brain Connectivity. 2015, 251-254. DOI: 10.1109/isbi.2015.7163861.Peer-Reviewed Original ResearchClassification of schizophreniaHigh-dimensional dataAutomatic differential diagnosisAutomatic classificationAccurate classifierDimensional dataChallenging taskNetwork connectivityDiscriminative analysisHigh accuracyPowerful informationClassificationTraining subjectsLarge amountPrevious workDynamic functional network connectivityConnectivityClassifierFunctional network connectivityFNC analysisTaskBrain connectivityRobustnessFrameworkAccuracy