2024
SGLT2 inhibition alters substrate utilization and mitochondrial redox in healthy and failing rat hearts
Goedeke L, Ma Y, Gaspar R, Nasiri A, Lee J, Zhang D, Galsgaard K, Hu X, Zhang J, Guerrera N, Li X, LaMoia T, Hubbard B, Haedersdal S, Wu X, Stack J, Dufour S, Butrico G, Kahn M, Perry R, Cline G, Young L, Shulman G. SGLT2 inhibition alters substrate utilization and mitochondrial redox in healthy and failing rat hearts. Journal Of Clinical Investigation 2024, 134: e176708. PMID: 39680452, PMCID: PMC11645152, DOI: 10.1172/jci176708.Peer-Reviewed Original ResearchConceptsSodium-glucose cotransporter type 2Heart failureKetone oxidationGas chromatography-mass spectrometryFatty acid oxidationLeft ventricular ejection fractionReduced myocardial oxidative stressVentricular ejection fractionKetone supplementationWeeks of treatmentMyocardial oxidative stressDecreased pyruvate oxidationInduce heart failurePlasma glucose levelsIn vivo effectsSGLT2i treatmentEjection fractionAssociated with improvementsAwake ratsSGLT2 inhibitionCardioprotective benefitsLiquid chromatography-tandem mass spectrometryPlasma ketonesRates of ketonizationChromatography-tandem mass spectrometry
2023
Lysophosphatidic acid triggers inflammation in the liver and white adipose tissue in rat models of 1-acyl-sn-glycerol-3-phosphate acyltransferase 2 deficiency and overnutrition
Sakuma I, Gaspar R, Luukkonen P, Kahn M, Zhang D, Zhang X, Murray S, Golla J, Vatner D, Samuel V, Petersen K, Shulman G. Lysophosphatidic acid triggers inflammation in the liver and white adipose tissue in rat models of 1-acyl-sn-glycerol-3-phosphate acyltransferase 2 deficiency and overnutrition. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2312666120. PMID: 38127985, PMCID: PMC10756285, DOI: 10.1073/pnas.2312666120.Peer-Reviewed Original ResearchMAD2-Dependent Insulin Receptor Endocytosis Regulates Metabolic Homeostasis.
Park J, Hall C, Hubbard B, LaMoia T, Gaspar R, Nasiri A, Li F, Zhang H, Kim J, Haeusler R, Accili D, Shulman G, Yu H, Choi E. MAD2-Dependent Insulin Receptor Endocytosis Regulates Metabolic Homeostasis. Diabetes 2023, 72: 1781-1794. PMID: 37725942, PMCID: PMC10658066, DOI: 10.2337/db23-0314.Peer-Reviewed Original ResearchConceptsIR endocytosisInsulin receptor endocytosisCell division regulatorsInsulin receptorProlongs insulin actionReceptor endocytosisTranscriptomic profilesInsulin stimulationEndocytosisMetabolic homeostasisCell surfaceGenetic ablationMetabolic functionsInsulin actionP31cometMad2BubR1DisruptionSignalingRegulatorHomeostasisAdipose tissueInteractionHepatic fat accumulationMetabolism
2022
Ethnic and gender differences in hepatic lipid content and related cardiometabolic parameters in lean individuals
Petersen KF, Dufour S, Li F, Rothman DL, Shulman GI. Ethnic and gender differences in hepatic lipid content and related cardiometabolic parameters in lean individuals. JCI Insight 2022, 7 PMID: 35167495, PMCID: PMC9057590, DOI: 10.1172/jci.insight.157906.Peer-Reviewed Original ResearchConceptsCardiometabolic risk factorsInsulin resistanceRisk factorsHDL cholesterolLDL cholesterolTotal cholesterolLean individualsMatsuda insulin sensitivity indexAI menCardiovascular risk factorsHomeostatic model assessmentHepatic triglyceride contentInsulin sensitivity indexType 2 diabetesHepatic lipid contentNovo Nordisk FoundationUric acid concentrationCardiometabolic parametersCardiovascular riskPremenopausal womenFatty liverPlasma insulinInsulin sensitivityPlasma concentrationsModel assessmentSex‐ and strain‐specific effects of mitochondrial uncoupling on age‐related metabolic diseases in high‐fat diet‐fed mice
Goedeke L, Murt KN, Di Francesco A, Camporez JP, Nasiri AR, Wang Y, Zhang X, Cline GW, de Cabo R, Shulman GI. Sex‐ and strain‐specific effects of mitochondrial uncoupling on age‐related metabolic diseases in high‐fat diet‐fed mice. Aging Cell 2022, 21: e13539. PMID: 35088525, PMCID: PMC8844126, DOI: 10.1111/acel.13539.Peer-Reviewed Original ResearchConceptsControlled-release mitochondrial protonophoreAge-related metabolic diseasesHepatocellular carcinomaMetabolic diseasesHigh-fat diet-fed miceProtein kinase C epsilon activationDiet-induced obese miceWhole-body energy expenditureC57BL/6J male miceDiet-fed miceHigh-fat dietHepatic lipid peroxidationHepatic lipid contentMitochondrial uncouplingHepatic insulin resistanceHigh therapeutic indexHepatic mitochondrial biogenesisStrain-specific effectsSex-specific mannerCRMP treatmentHFD feedingUnwanted side effectsObese miceInsulin resistanceChronic ingestion
2021
IL-27 signalling promotes adipocyte thermogenesis and energy expenditure
Wang Q, Li D, Cao G, Shi Q, Zhu J, Zhang M, Cheng H, Wen Q, Xu H, Zhu L, Zhang H, Perry RJ, Spadaro O, Yang Y, He S, Chen Y, Wang B, Li G, Liu Z, Yang C, Wu X, Zhou L, Zhou Q, Ju Z, Lu H, Xin Y, Yang X, Wang C, Liu Y, Shulman GI, Dixit VD, Lu L, Yang H, Flavell RA, Yin Z. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature 2021, 600: 314-318. PMID: 34819664, DOI: 10.1038/s41586-021-04127-5.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAnimalsBariatric SurgeryDisease Models, AnimalEnergy MetabolismFemaleHumansInsulin ResistanceInterleukin-27MaleMiceObesityP38 Mitogen-Activated Protein KinasesPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaReceptors, InterleukinSignal TransductionThermogenesisUncoupling Protein 1ConceptsIL-27Beige adipose tissueAdipose tissueSerum IL-27Diet-induced obesityBariatric surgeryMetabolic morbidityImmunological factorsInsulin resistanceObesity showTherapeutic administrationMetabolic disordersMouse modelObesityPromising targetEnergy expenditureSignaling promotesThermogenesisBody temperatureMetabolic programsImportant roleTissueCritical roleImmunotherapyMorbidityShort-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol – PKCε – insulin receptorT1160 phosphorylation
Lyu K, Zhang D, Song J, Li X, Perry RJ, Samuel VT, Shulman GI. Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol – PKCε – insulin receptorT1160 phosphorylation. JCI Insight 2021, 6: e139946. PMID: 33411692, PMCID: PMC7934919, DOI: 10.1172/jci.insight.139946.Peer-Reviewed Original ResearchConceptsInsulin resistanceInsulin actionAdipose tissue insulin resistanceTissue insulin resistanceWT control miceHyperinsulinemic-euglycemic clampShort-term HFDTissue insulin actionAdipose tissue insulin actionDiet-fed ratsPotential therapeutic targetHFD feedingControl miceInsulin sensitivityTherapeutic targetLipolysis suppressionImpairs insulinHFDPKCε activationGlucose uptakeΕ activationMiceDiacylglycerol accumulationRecent evidenceProtein kinase C
2020
Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance
He F, Huang Y, Song Z, Zhou HJ, Zhang H, Perry RJ, Shulman GI, Min W. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. Journal Of Experimental Medicine 2020, 218: e20201416. PMID: 33315085, PMCID: PMC7927432, DOI: 10.1084/jem.20201416.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAdipose TissueAnimalsDiabetes Mellitus, Type 2Diet, High-FatEnergy MetabolismFatty LiverGene DeletionGene TargetingGluconeogenesisHomeostasisHumansHyperglycemiaInflammationInsulin ResistanceLipogenesisLiverMaleMice, Inbred C57BLMice, KnockoutMitochondriaMitophagyNF-kappa BOxidative StressPhenotypeReactive Oxygen SpeciesSequestosome-1 ProteinSignal TransductionThioredoxinsConceptsHepatic insulin resistanceWhite adipose tissueInsulin resistanceAdipose inflammationType 2 diabetes mellitusLipid metabolic disordersNF-κB inhibitorAdipose-specific deletionWhole-body energy homeostasisAltered fatty acid metabolismFatty acid metabolismT2DM progressionT2DM patientsDiabetes mellitusReactive oxygen species pathwayHepatic steatosisMetabolic disordersNF-κBP62/SQSTM1Adipose tissueHuman adipocytesEnergy homeostasisExcessive mitophagyOxygen species pathwayInflammationMechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice
Li X, Zhang D, Vatner DF, Goedeke L, Hirabara SM, Zhang Y, Perry RJ, Shulman GI. Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 32584-32593. PMID: 33293421, PMCID: PMC7768680, DOI: 10.1073/pnas.1922169117.Peer-Reviewed Original ResearchConceptsEpididymal white adipose tissueInsulin resistanceAdiponectin treatmentAdipose tissueHigh-fat diet-induced insulin resistanceType 2 diabetes mellitusWhole-body insulin resistanceDiet-induced insulin resistanceSkeletal muscleEctopic lipid storageReverses insulin resistanceInsulin-mediated suppressionMuscle fatty acid oxidationEndogenous glucose productionMuscle insulin resistanceWhite adipose tissueLipoprotein lipase activityMuscle fat oxidationPKCε translocationInsulin-stimulated glucose uptakeFatty acid oxidationTAG uptakeDiabetes mellitusMuscle sensitivityAkt serine phosphorylationEffect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults
Kahleova H, Petersen KF, Shulman GI, Alwarith J, Rembert E, Tura A, Hill M, Holubkov R, Barnard ND. Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults. JAMA Network Open 2020, 3: e2025454. PMID: 33252690, PMCID: PMC7705596, DOI: 10.1001/jamanetworkopen.2020.25454.Peer-Reviewed Original ResearchMeSH KeywordsAbsorptiometry, PhotonAdultAgedBlood GlucoseBody CompositionBody WeightCholesterolCholesterol, HDLCholesterol, LDLC-PeptideDiet, Fat-RestrictedDiet, VeganEnergy IntakeEnergy MetabolismFemaleGlycated HemoglobinHepatocytesHumansInsulinInsulin ResistanceIntra-Abdominal FatLipid MetabolismLiverMaleMiddle AgedMuscle Fibers, SkeletalMuscle, SkeletalObesityOverweightPostprandial PeriodProton Magnetic Resonance SpectroscopyTriglyceridesConceptsLow-fat vegan dietHomeostasis model assessment indexIntramyocellular lipid levelsModel assessment indexIntervention groupLipid levelsBody weightInsulin resistancePostprandial metabolismVegan dietOverweight adultsDietary interventionInsulin sensitivityThermic effectControl groupPlant-based dietary interventionDual X-ray absorptiometryInsulin resistance leadExcess body weightInsulin sensitivity indexType 2 diabetesMajor health problemProton magnetic resonance spectroscopyX-ray absorptiometrySubset of participantsA MicroRNA Linking Human Positive Selection and Metabolic Disorders
Wang L, Sinnott-Armstrong N, Wagschal A, Wark AR, Camporez JP, Perry RJ, Ji F, Sohn Y, Oh J, Wu S, Chery J, Moud BN, Saadat A, Dankel SN, Mellgren G, Tallapragada DSP, Strobel SM, Lee MJ, Tewhey R, Sabeti PC, Schaefer A, Petri A, Kauppinen S, Chung RT, Soukas A, Avruch J, Fried SK, Hauner H, Sadreyev RI, Shulman GI, Claussnitzer M, Näär AM. A MicroRNA Linking Human Positive Selection and Metabolic Disorders. Cell 2020, 183: 684-701.e14. PMID: 33058756, PMCID: PMC8092355, DOI: 10.1016/j.cell.2020.09.017.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytes, BrownAdiposityAllelesAnimalsCell DifferentiationCell LineCells, CulturedDiet, High-FatEnergy MetabolismEpigenesis, GeneticGenetic LociGlucoseHomeostasisHumansHypertrophyInsulin ResistanceLeptinMaleMammalsMetabolic DiseasesMice, Inbred C57BLMice, ObeseMicroRNAsObesityOligonucleotidesSpecies SpecificityConceptsPositive selectionMiR-128Additional genetic elementsCrucial metabolic regulatorAncient adaptationEvolutionary adaptationGenetic elementsMetabolic regulatorGenetic ablationLociMetabolic maladaptationLactase geneAntisense targetingMetabolic disease modelsThrifty phenotypeDisease modelsDiet-induced obesityMetabolic diseasesAbility of adultsMammalsAdaptationGenesMicroRNAsRegulatorSelectionDissociation of Muscle Insulin Resistance from Alterations in Mitochondrial Substrate Preference
Song JD, Alves TC, Befroy DE, Perry RJ, Mason GF, Zhang XM, Munk A, Zhang Y, Zhang D, Cline GW, Rothman DL, Petersen KF, Shulman GI. Dissociation of Muscle Insulin Resistance from Alterations in Mitochondrial Substrate Preference. Cell Metabolism 2020, 32: 726-735.e5. PMID: 33035493, PMCID: PMC8218871, DOI: 10.1016/j.cmet.2020.09.008.Peer-Reviewed Original ResearchObesity-Linked PPARγ S273 Phosphorylation Promotes Insulin Resistance through Growth Differentiation Factor 3
Hall JA, Ramachandran D, Roh HC, DiSpirito JR, Belchior T, Zushin PH, Palmer C, Hong S, Mina AI, Liu B, Deng Z, Aryal P, Jacobs C, Tenen D, Brown CW, Charles JF, Shulman GI, Kahn BB, Tsai LTY, Rosen ED, Spiegelman BM, Banks AS. Obesity-Linked PPARγ S273 Phosphorylation Promotes Insulin Resistance through Growth Differentiation Factor 3. Cell Metabolism 2020, 32: 665-675.e6. PMID: 32941798, PMCID: PMC7543662, DOI: 10.1016/j.cmet.2020.08.016.Peer-Reviewed Original ResearchConceptsInsulin resistanceInsulin sensitivitySide effectsObesity-linked phosphorylationSignificant side effectsLigands of PPARγHyperinsulinemic-euglycemic clamp experimentsPromotes Insulin ResistanceDiabetogenic roleReceptor agonismGrowth differentiation factor 3Healthy miceBody weightMice revealsThiazolidinedionesClamp experimentsPPARγMiceInhibits BMPFamily membersFactor 3Putative targetsSerine 273Ectopic expressionBMP family membersA Membrane-Bound Diacylglycerol Species Induces PKCϵ-Mediated Hepatic Insulin Resistance
Lyu K, Zhang Y, Zhang D, Kahn M, Ter Horst KW, Rodrigues MRS, Gaspar RC, Hirabara SM, Luukkonen PK, Lee S, Bhanot S, Rinehart J, Blume N, Rasch MG, Serlie MJ, Bogan JS, Cline GW, Samuel VT, Shulman GI. A Membrane-Bound Diacylglycerol Species Induces PKCϵ-Mediated Hepatic Insulin Resistance. Cell Metabolism 2020, 32: 654-664.e5. PMID: 32882164, PMCID: PMC7544641, DOI: 10.1016/j.cmet.2020.08.001.Peer-Reviewed Original ResearchConceptsPlasma membraneEndoplasmic reticulumHigh-fat diet-induced hepatic insulin resistanceSubcellular fractionation methodInsulin receptor kinaseKey lipid speciesHepatic insulin resistanceDiet-induced hepatic insulin resistanceReceptor kinaseDiacylglycerol acyltransferase 2Molecular mechanismsAcute knockdownPhosphorylationLipid dropletsLipid speciesAcyltransferase 2KnockdownLiver-specific overexpressionDAG accumulationPKCϵDAG contentMembraneFractionation methodKinaseMitochondriaMetabolic control analysis of hepatic glycogen synthesis in vivo
Nozaki Y, Petersen MC, Zhang D, Vatner DF, Perry RJ, Abulizi A, Haedersdal S, Zhang XM, Butrico GM, Samuel VT, Mason GF, Cline GW, Petersen KF, Rothman DL, Shulman GI. Metabolic control analysis of hepatic glycogen synthesis in vivo. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 8166-8176. PMID: 32188779, PMCID: PMC7149488, DOI: 10.1073/pnas.1921694117.Peer-Reviewed Original ResearchOne-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension
Bilet L, Phielix E, van de Weijer T, Gemmink A, Bosma M, Moonen-Kornips E, Jorgensen JA, Schaart G, Zhang D, Meijer K, Hopman M, Hesselink MKC, Ouwens DM, Shulman GI, Schrauwen-Hinderling VB, Schrauwen P. One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension. Diabetologia 2020, 63: 1211-1222. PMID: 32185462, PMCID: PMC7228997, DOI: 10.1007/s00125-020-05128-1.Peer-Reviewed Original ResearchConceptsMitochondrial oxidative capacityLow mitochondrial oxidative capacityLipid infusionInsulin resistancePhysical inactivityOxidative capacityLipid-induced insulin resistanceUnilateral lower limb suspensionConclusions/interpretationTogetherIntramyocellular lipid depositionMusculus tibialis anteriorChronic metabolic disorderIntramyocellular lipid accumulationType 2 diabetesReduced insulin sensitivityMuscle fat accumulationMusculus vastus lateralisMitochondrial functionUnilateral limb suspensionIMCL contentContralateral legInsulin sensitivityResultsIn vivoTibialis anteriorFat accumulationEffect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease
Luukkonen PK, Dufour S, Lyu K, Zhang XM, Hakkarainen A, Lehtimäki TE, Cline GW, Petersen KF, Shulman GI, Yki-Järvinen H. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 7347-7354. PMID: 32179679, PMCID: PMC7132133, DOI: 10.1073/pnas.1922344117.Peer-Reviewed Original ResearchMeSH KeywordsBody CompositionCitrate (si)-SynthaseDiet, KetogenicFatty AcidsFatty Acids, NonesterifiedFatty LiverFemaleHumansInsulinInsulin ResistanceLipoproteins, VLDLLiverMaleMiddle AgedMitochondriaNon-alcoholic Fatty Liver DiseaseObesityOverweightOxidation-ReductionPyruvate CarboxylaseTriglyceridesConceptsNonalcoholic fatty liver diseaseFatty liver diseaseIntrahepatic triglyceridesKetogenic dietHepatic insulin resistanceNonesterified fatty acidsInsulin resistanceLiver diseaseOverweight/obese subjectsHepatic mitochondrial redox stateSerum insulin concentrationsHepatic mitochondrial metabolismProton magnetic resonance spectroscopyStable isotope infusionKD dietObese subjectsFatty acidsPlasma leptinHepatic steatosisInsulin concentrationsNEFA concentrationsBody weightTriiodothyronine concentrationsIsotope infusionWeight lossLeptin mediates postprandial increases in body temperature through hypothalamus–adrenal medulla–adipose tissue crosstalk
Perry RJ, Lyu K, Rabin-Court A, Dong J, Li X, Yang Y, Qing H, Wang A, Yang X, Shulman GI. Leptin mediates postprandial increases in body temperature through hypothalamus–adrenal medulla–adipose tissue crosstalk. Journal Of Clinical Investigation 2020, 130: 2001-2016. PMID: 32149734, PMCID: PMC7108915, DOI: 10.1172/jci134699.Peer-Reviewed Original ResearchConceptsBrown adipose tissueLeptin concentrationsBody temperatureAdrenomedullary catecholamine secretionPlasma leptin concentrationsAdipose tissue lipolysisFasting-induced reductionFeeding-induced increaseMeal ingestionPlasma catecholaminesPostprandial increaseCatecholamine secretionObese ratsTissue lipolysisLean ratsAdrenergic activationAdipose tissueTissue crosstalkWeight gainIntragastric infusionRatsLeptinBolusLipolysisFatty acidsRegulation of adipose tissue inflammation by interleukin 6
Han MS, White A, Perry RJ, Camporez JP, Hidalgo J, Shulman GI, Davis RJ. Regulation of adipose tissue inflammation by interleukin 6. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 2751-2760. PMID: 31980524, PMCID: PMC7022151, DOI: 10.1073/pnas.1920004117.Peer-Reviewed Original ResearchConceptsInterleukin-6Adipose tissue inflammationLow-grade inflammationIndividual cell typesMacrophage infiltrationInflammatory cytokinesTissue inflammationGlucose disposalImmune cellsIL6 productionMouse modelChronic stateAdipose tissueMyeloid cellsTissue infiltrationReceptor αConditional expressionCell typesOxidative metabolismOpposite actionsPhysiological regulationEnergy expenditureCanonical modeInflammationSpecific cells
2019
Distinct Hepatic PKA and CDK Signaling Pathways Control Activity-Independent Pyruvate Kinase Phosphorylation and Hepatic Glucose Production
Gassaway BM, Cardone RL, Padyana AK, Petersen MC, Judd ET, Hayes S, Tong S, Barber KW, Apostolidi M, Abulizi A, Sheetz JB, Kshitiz, Aerni HR, Gross S, Kung C, Samuel VT, Shulman GI, Kibbey RG, Rinehart J. Distinct Hepatic PKA and CDK Signaling Pathways Control Activity-Independent Pyruvate Kinase Phosphorylation and Hepatic Glucose Production. Cell Reports 2019, 29: 3394-3404.e9. PMID: 31825824, PMCID: PMC6951436, DOI: 10.1016/j.celrep.2019.11.009.Peer-Reviewed Original ResearchConceptsCyclin-dependent kinasesMetabolic control pointPhosphorylation sitesNuclear retentionCDK activityPKL activityDays high-fat dietKinase phosphorylationImportant enzymePyruvate kinaseHigh-fat dietS113KinaseEnzyme kineticsPhosphorylationAdditional control pointsRegulationGlucose productionHepatic glucose productionInsulin resistanceGlycolysisEnzymePKAPathwayActivity