2020
Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults
Kahleova H, Petersen KF, Shulman GI, Alwarith J, Rembert E, Tura A, Hill M, Holubkov R, Barnard ND. Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults. JAMA Network Open 2020, 3: e2025454. PMID: 33252690, PMCID: PMC7705596, DOI: 10.1001/jamanetworkopen.2020.25454.Peer-Reviewed Original ResearchMeSH KeywordsAbsorptiometry, PhotonAdultAgedBlood GlucoseBody CompositionBody WeightCholesterolCholesterol, HDLCholesterol, LDLC-PeptideDiet, Fat-RestrictedDiet, VeganEnergy IntakeEnergy MetabolismFemaleGlycated HemoglobinHepatocytesHumansInsulinInsulin ResistanceIntra-Abdominal FatLipid MetabolismLiverMaleMiddle AgedMuscle Fibers, SkeletalMuscle, SkeletalObesityOverweightPostprandial PeriodProton Magnetic Resonance SpectroscopyTriglyceridesConceptsLow-fat vegan dietHomeostasis model assessment indexIntramyocellular lipid levelsModel assessment indexIntervention groupLipid levelsBody weightInsulin resistancePostprandial metabolismVegan dietOverweight adultsDietary interventionInsulin sensitivityThermic effectControl groupPlant-based dietary interventionDual X-ray absorptiometryInsulin resistance leadExcess body weightInsulin sensitivity indexType 2 diabetesMajor health problemProton magnetic resonance spectroscopyX-ray absorptiometrySubset of participants
2014
Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis
Perry RJ, Zhang XM, Zhang D, Kumashiro N, Camporez JP, Cline GW, Rothman DL, Shulman GI. Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nature Medicine 2014, 20: 759-763. PMID: 24929951, PMCID: PMC4344321, DOI: 10.1038/nm.3579.Peer-Reviewed Original ResearchMetformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez JP, Lee HY, Cline GW, Samuel VT, Kibbey RG, Shulman GI. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014, 510: 542-546. PMID: 24847880, PMCID: PMC4074244, DOI: 10.1038/nature13270.Peer-Reviewed Original Research
2010
Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice
Ayala JE, Consortium F, Samuel V, Morton G, Obici S, Croniger C, Shulman G, Wasserman D, McGuinness O. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease Models & Mechanisms 2010, 3: 525-534. PMID: 20713647, PMCID: PMC2938392, DOI: 10.1242/dmm.006239.Peer-Reviewed Original Research
2005
Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents
Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, Pypaert M, Shulman GI. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. Journal Of Clinical Investigation 2005, 115: 3587-3593. PMID: 16284649, PMCID: PMC1280967, DOI: 10.1172/jci25151.Peer-Reviewed Original ResearchMeSH KeywordsBiopsyBlood GlucoseBlotting, WesternBody Mass IndexBody WeightDiabetes Mellitus, Type 2DNA, MitochondrialFamily HealthFemaleGene Expression RegulationGlucose Clamp TechniqueGlucose Tolerance TestHumansHyperinsulinismImmunoprecipitationInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLipidsMaleMicroscopy, ElectronMicroscopy, Electron, TransmissionMitochondriaMusclesPhosphoproteinsPhosphorylationProtein Serine-Threonine KinasesReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSerineSignal TransductionTime FactorsTranscription, GeneticTriglyceridesConceptsInsulin-resistant offspringIR offspringType 2 diabetesInsulin-stimulated muscle glucose uptakeType 2 diabetic parentsIntramyocellular lipid contentHyperinsulinemic-euglycemic clampMuscle glucose uptakeIRS-1 serine phosphorylationMuscle mitochondrial densityMitochondrial densityMuscle biopsy samplesSerine kinase cascadeInsulin-stimulated Akt activationDiabetic parentsInsulin resistanceControl subjectsBiopsy samplesGlucose uptakeLipid accumulationMitochondrial dysfunctionInsulin signalingAkt activationEarly defectsMuscle
2004
Impaired Mitochondrial Activity in the Insulin-Resistant Offspring of Patients with Type 2 Diabetes
Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired Mitochondrial Activity in the Insulin-Resistant Offspring of Patients with Type 2 Diabetes. New England Journal Of Medicine 2004, 350: 664-671. PMID: 14960743, PMCID: PMC2995502, DOI: 10.1056/nejmoa031314.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAdipose TissueBlood GlucoseDiabetes Mellitus, Type 2Fatty AcidsFemaleGlucoseGlucose Clamp TechniqueGlucose Tolerance TestGlycerolHumansInsulinInsulin ResistanceLipolysisMagnetic Resonance SpectroscopyMaleMitochondriaMuscle, SkeletalOxidative PhosphorylationTriglyceridesConceptsInsulin-resistant offspringType 2 diabetesIntramyocellular lipid contentInsulin-sensitive control subjectsMagnetic resonance spectroscopy studyInsulin resistanceControl subjectsProton magnetic resonance spectroscopy studyHyperinsulinemic-euglycemic clamp studiesTumor necrosis factor alphaImpaired mitochondrial activityIntrahepatic triglyceride contentDevelopment of diabetesChildren of patientsInsulin-resistant subjectsNecrosis factor alphaSensitivity of liverInsulin-stimulated ratesFatty acid metabolismMitochondrial oxidative phosphorylation activityInterleukin-6Intramyocellular lipidsPlasma concentrationsFactor alphaClamp studies
2003
Mitochondrial Dysfunction in the Elderly: Possible Role in Insulin Resistance
Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI. Mitochondrial Dysfunction in the Elderly: Possible Role in Insulin Resistance. Science 2003, 300: 1140-1142. PMID: 12750520, PMCID: PMC3004429, DOI: 10.1126/science.1082889.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAdolescentAdultAgedAged, 80 and overAgingBlood GlucoseBody Mass IndexFemaleHumansInsulinInsulin ResistanceLiverMaleMiddle AgedMitochondriaMitochondrial DiseasesMuscle, SkeletalNuclear Magnetic Resonance, BiomolecularOxidation-ReductionOxygen ConsumptionPhosphorylationTriglyceridesConceptsInsulin resistanceInsulin-stimulated muscle glucose metabolismType 2 diabetesMuscle glucose metabolismLean body massElderly study participantsAge-associated declineMitochondrial function contributesFat massFat accumulationGlucose metabolismYoung controlsStudy participantsLiver tissueFunction contributesMitochondrial dysfunctionYounger participantsPossible roleMitochondrial oxidativeBody massMagnetic resonance spectroscopyParticipantsDiabetesDysfunctionPathogenesis
2001
Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance
Kim J, Fillmore J, Chen Y, Yu C, Moore I, Pypaert M, Lutz E, Kako Y, Velez-Carrasco W, Goldberg I, Breslow J, Shulman G. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 7522-7527. PMID: 11390966, PMCID: PMC34701, DOI: 10.1073/pnas.121164498.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood GlucoseFatty Acids, NonesterifiedGlucagonGlucoseGlucose Clamp TechniqueGlucose Tolerance TestHeterozygoteInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLeptinLipoprotein LipaseLiverMiceMice, KnockoutMice, TransgenicMuscle, SkeletalOrgan SpecificityPhosphatidylinositol 3-KinasesPhosphoproteinsSignal TransductionTriglyceridesConceptsInsulin resistanceFatty acid-derived metabolitesInsulin actionTriglyceride contentType 2 diabetes mellitusInsulin activationLipoprotein lipaseInsulin receptor substrate-1-associated phosphatidylinositolMuscle triglyceride contentSkeletal muscleTissue-specific insulin resistanceLiver triglyceride contentAdipocyte-derived hormoneHyperinsulinemic-euglycemic clampEndogenous glucose productionLiver-specific overexpressionTissue-specific overexpressionInsulin-stimulated glucose uptakeDiabetes mellitusTissue-specific increaseTransgenic miceGlucose productionFat metabolismGlucose uptakeInsulinInsulin Resistance and a Diabetes Mellitus-Like Syndrome in Mice Lacking the Protein Kinase Akt2 (PKBβ)
Cho H, Mu J, Kim J, Thorvaldsen J, Chu Q, Crenshaw E, Kaestner K, Bartolomei M, Shulman G, Birnbaum M. Insulin Resistance and a Diabetes Mellitus-Like Syndrome in Mice Lacking the Protein Kinase Akt2 (PKBβ). Science 2001, 292: 1728-1731. PMID: 11387480, DOI: 10.1126/science.292.5522.1728.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood GlucoseDeoxyglucoseDiabetes Mellitus, Type 2FemaleGene TargetingGlucoseGlucose Clamp TechniqueGlucose Tolerance TestHomeostasisInsulinInsulin ResistanceIslets of LangerhansLiverMaleMiceMice, Inbred C57BLMice, TransgenicMuscle, SkeletalProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktSignal TransductionConceptsSerine-threonine protein kinase AktProtein kinase Akt2Protein kinase AktProtein kinase B.Activation of phosphatidylinositolEssential genesKinase Akt2Kinase AktAbility of insulinGlucose homeostasisNormal glucose homeostasisAkt2Critical initial stepEarly eventsSkeletal muscleHomeostasisInsulin actionMice LackingInsulin responsivenessInitial stepActivationInsulin resistancePhosphatidylinositolBlood glucoseGenesUncoupling Protein-2 Negatively Regulates Insulin Secretion and Is a Major Link between Obesity, β Cell Dysfunction, and Type 2 Diabetes
Zhang C, Baffy G, Perret P, Krauss S, Peroni O, Grujic D, Hagen T, Vidal-Puig A, Boss O, Kim Y, Zheng X, Wheeler M, Shulman G, Chan C, Lowell B. Uncoupling Protein-2 Negatively Regulates Insulin Secretion and Is a Major Link between Obesity, β Cell Dysfunction, and Type 2 Diabetes. Cell 2001, 105: 745-755. PMID: 11440717, DOI: 10.1016/s0092-8674(01)00378-6.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsBlood GlucoseBody WeightDiabetes MellitusDiabetes Mellitus, Type 2Disease Models, AnimalGene TargetingHomeostasisHumansHyperglycemiaInsulinInsulin SecretionIon ChannelsIslets of LangerhansMaleMembrane Transport ProteinsMiceMice, KnockoutMice, ObeseMitochondrial ProteinsModels, BiologicalObesityProteinsRNA, MessengerThermogenesisUncoupling AgentsUncoupling Protein 2ConceptsOb/ob miceInsulin secretionOb miceCell dysfunctionFirst-phase insulin secretionIslet ATP levelsGlucose-stimulated insulin secretionLevel of glycemiaSerum insulin levelsBeta-cell dysfunctionType 2 diabetesObesity-induced diabetesΒ-cell dysfunctionBeta-cell glucose sensingProtein 2UCP2-deficient miceInsulin levelsPathophysiologic significanceBeta cellsType 2SecretionMiceObesityATP levelsDiabetesEffect of 5-Aminoimidazole-4-Carboxamide-1-β-d-Ribofuranoside Infusion on In Vivo Glucose and Lipid Metabolism in Lean and Obese Zucker Rats
Bergeron R, Previs S, Cline G, Perret P, Russell III R, Young L, Shulman G. Effect of 5-Aminoimidazole-4-Carboxamide-1-β-d-Ribofuranoside Infusion on In Vivo Glucose and Lipid Metabolism in Lean and Obese Zucker Rats. Diabetes 2001, 50: 1076-1082. PMID: 11334411, DOI: 10.2337/diabetes.50.5.1076.Peer-Reviewed Original ResearchMeSH KeywordsAdenylate KinaseAminoimidazole CarboxamideAnimalsBlood GlucoseBody WeightFatty Acids, NonesterifiedGlucoseGlycerolInfusions, IntravenousInjections, IntravenousInsulinInsulin ResistanceLactatesMaleModels, AnimalMuscle, SkeletalObesityRatsRats, ZuckerReference ValuesRibonucleotidesTriglyceridesConceptsWhole-body glucose disposalInsulin-resistant rat modelObese ratsEndogenous glucose productionObese Zucker ratsRed gastrocnemius muscleInsulin infusion rateLean ratsGlucose disposalInsulin infusionRat modelInfusion rateGastrocnemius muscleZucker ratsLipid metabolismGlucose productionEndogenous glucose production rateGlucose transport activitySkeletal muscle glucose transport activityType 2 diabetesWhole-body carbohydrateInsulin-stimulated glucose uptakeInsulin-independent pathwaySkeletal muscle AMPKGlucose production rateContribution of net hepatic glycogen synthesis to disposal of an oral glucose load in humans
Petersen K, Cline G, Gerard D, Magnusson I, Rothman D, Shulman G. Contribution of net hepatic glycogen synthesis to disposal of an oral glucose load in humans. Metabolism 2001, 50: 598-601. PMID: 11319724, DOI: 10.1053/meta.2001.22561.Peer-Reviewed Original ResearchConceptsHepatic glycogen synthesisOral glucose loadGlucose loadMagnetic resonance imagingLiver glycogen synthesisNet hepatic glycogen synthesisLiver volumeGlycogen synthesisWhole-body glucose disposalGlycogen contentHepatic glycogen concentrationIngestion of glucoseLiver glycogen contentHepatic glycogen contentIdentical glucose loadHepatic UDP-glucoseGlucose disposalGroup 2Group 1Direct pathwayResonance imagingGlycogen concentrationMean maximum rateLiverIngestionOverexpression of the LAR (leukocyte antigen-related) protein-tyrosine phosphatase in muscle causes insulin resistance
Zabolotny J, Kim Y, Peroni O, Kim J, Pani M, Boss O, Klaman L, Kamatkar S, Shulman G, Kahn B, Neel B. Overexpression of the LAR (leukocyte antigen-related) protein-tyrosine phosphatase in muscle causes insulin resistance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 5187-5192. PMID: 11309481, PMCID: PMC33185, DOI: 10.1073/pnas.071050398.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood GlucoseBody CompositionCreatine KinaseCreatine Kinase, MM FormFatty Acids, NonesterifiedHumansInsulinInsulin ResistanceIntracellular Signaling Peptides and ProteinsIsoenzymesMiceMice, TransgenicMusclesOrgan SpecificityPhosphatidylinositol 3-KinasesPhosphorylationPhosphotyrosinePromoter Regions, GeneticProtein Tyrosine Phosphatase, Non-Receptor Type 6Protein Tyrosine PhosphatasesRecombinant Fusion ProteinsSignal TransductionConceptsIRS proteinsLAR protein tyrosine phosphataseKinase activityProtein tyrosine phosphatase LARIRS-2Insulin receptor substrate-1Protein tyrosine phosphatasePI3-kinase activityInsulin-resistant humansReceptor substrate-1Association of p85alphaInsulin resistanceInsulin-responsive tissuesHuman LARTyrosyl phosphorylationInsulin target tissuesTransgenic miceSubstrate-1IRS-1Wild-type controlsInsulin receptorWhole-body glucose disposalWhole-body insulin resistancePhosphotyrosinePhosphorylation
2000
Regulation of myocardial [13C]glucose metabolism in conscious rats
McNulty P, Cline G, Whiting J, Shulman G. Regulation of myocardial [13C]glucose metabolism in conscious rats. AJP Heart And Circulatory Physiology 2000, 279: h375-h381. PMID: 10899078, DOI: 10.1152/ajpheart.2000.279.1.h375.Peer-Reviewed Original ResearchRedistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle
Kim J, Michael M, Previs S, Peroni O, Mauvais-Jarvis F, Neschen S, Kahn B, Kahn C, Shulman G. Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. Journal Of Clinical Investigation 2000, 105: 1791-1797. PMID: 10862794, PMCID: PMC378504, DOI: 10.1172/jci8305.Peer-Reviewed Original ResearchConceptsInsulin resistanceSelective insulin resistanceMIRKO miceType 2 diabetesHyperinsulinemic-euglycemic conditionsInsulin-stimulated muscle glucose transportMuscle glucose transportMuscle-specific inactivationPrediabetic syndromeGlucose transportControl miceFat massInsulin receptor geneInsulin actionMiceRedistribution of substratesSkeletal muscleImportant associationPotential mechanismsReceptor geneObesityGlycogen synthesisTissueMuscleAdiposityTransgenic mice overexpressing GLUT-1 protein in muscle exhibit increased muscle glycogenesis after exercise
Ren J, Barucci N, Marshall B, Hansen P, Mueckler M, Shulman G. Transgenic mice overexpressing GLUT-1 protein in muscle exhibit increased muscle glycogenesis after exercise. AJP Endocrinology And Metabolism 2000, 278: e588-e592. PMID: 10751190, DOI: 10.1152/ajpendo.2000.278.4.e588.Peer-Reviewed Original ResearchConceptsTg miceMuscle glycogen concentrationNT miceTransgenic miceGlycogen concentrationH postexerciseEDL musclesGastrocnemius muscleMuscle glycogenExtensor digitorum longus muscleMale transgenic miceIsolated EDL musclesAge-matched littermatesDigitorum longus muscleMuscle glycogen synthase activationMuscle glycogenesisLongus muscleMuscle glycogenolysisGLUT-1 proteinSynthase activationMicePostexerciseHuman GLUT-1GLUT-1Glycogen synthase activationMechanism of muscle glycogen autoregulation in humans
Laurent D, Hundal R, Dresner A, Price T, Vogel S, Petersen K, Shulman G. Mechanism of muscle glycogen autoregulation in humans. AJP Endocrinology And Metabolism 2000, 278: e663-e668. PMID: 10751200, DOI: 10.1152/ajpendo.2000.278.4.e663.Peer-Reviewed Original ResearchConceptsInsulin-stimulated ratesWhole body glucose oxidation ratesMuscle glycogenGlycogen loadingPlasma free fatty acid concentrationsWhole-body glucose uptakeFree fatty acid concentrationsMuscle glycogen contentGlucose oxidation ratesMuscle glycogen synthesisPlasma lactate concentrationTwofold increaseHyperinsulinemic clampGlycogen synthase activityFatty acid concentrationsLoading protocolGlucose infusionHealthy volunteersLactate concentrationGlycogen contentGlucose uptakeAnaerobic glycolysisGlycogen synthesisUnlabeled glucose infusionGlycogen
1999
Metabolic control analysis of insulin-stimulated glucose disposal in rat skeletal muscle
Jucker B, Barucci N, Shulman G. Metabolic control analysis of insulin-stimulated glucose disposal in rat skeletal muscle. American Journal Of Physiology 1999, 277: e505-e512. PMID: 10484363, DOI: 10.1152/ajpendo.1999.277.3.e505.Peer-Reviewed Original ResearchConceptsInsulin-stimulated glucose disposalGlucose transport/phosphorylationGlucose disposalHyperinsulinemic clampAwake ratsInfusion protocolGlycogen synthesisSkeletal muscleGlucose infusion rateMuscle glucose disposalSkeletal muscle glucose disposalProtocol IRat skeletal muscleRate of glycolysisInfusion rateHindlimb musclesMajority of controlsImpaired Glucose Transport as a Cause of Decreased Insulin-Stimulated Muscle Glycogen Synthesis in Type 2 Diabetes
Cline G, Petersen K, Krssak M, Shen J, Hundal R, Trajanoski Z, Inzucchi S, Dresner A, Rothman D, Shulman G. Impaired Glucose Transport as a Cause of Decreased Insulin-Stimulated Muscle Glycogen Synthesis in Type 2 Diabetes. New England Journal Of Medicine 1999, 341: 240-246. PMID: 10413736, DOI: 10.1056/nejm199907223410404.Peer-Reviewed Original ResearchConceptsMuscle glycogen synthesisType 2 diabetes mellitusConcentrations of insulinNormal subjectsDiabetes mellitusGlucose metabolismGlycogen synthesisGlucose concentrationWhole-body glucose metabolismInsulin-stimulated muscle glycogen synthesisIntracellular glucose concentrationType 2 diabetesPlasma insulin concentrationGlucose transportImpaired glucose transportInterstitial fluid glucose concentrationsOpen-flow microperfusionIntramuscular glucoseInterstitial fluidGlucose-6-phosphate concentrationInsulin resistanceVivo microdialysisInsulin concentrationsHyperinsulinemic conditionsPatientsA critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in vivo
Previs S, Cline G, Shulman G. A critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in vivo. American Journal Of Physiology 1999, 277: e154-e160. PMID: 10409139, DOI: 10.1152/ajpendo.1999.277.1.e154.Peer-Reviewed Original Research