2001
Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants
Fleming K, Engelman D. Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 14340-14344. PMID: 11724930, PMCID: PMC64683, DOI: 10.1073/pnas.251367498.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesDimerizationDrug StabilityElectrophoresis, Polyacrylamide GelGenetic VariationGlycophorinsHumansIn Vitro TechniquesMagnetic Resonance SpectroscopyMembrane ProteinsMutagenesis, Site-DirectedPoint MutationProtein FoldingProtein Structure, SecondaryRecombinant Fusion ProteinsThermodynamicsUltracentrifugationConceptsHelix-helix interactionsMembrane proteinsTransmembrane helix-helix interactionsSequence variantsHelical membrane proteinsTransmembrane helix dimerizationProtein-protein interactionsDifferent hydrophobic environmentsAlanine-scanning mutagenesisSedimentation equilibrium analytical ultracentrifugationEquilibrium analytical ultracentrifugationTransmembrane helicesHelix dimerizationGxxxG motifDimer interfaceNMR structureDimer stabilityAnalytical ultracentrifugationHydrophobic environmentProteinMutationsSequence dependenceEnergetic principlesHierarchy of stabilityMutagenesis
1997
The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody
Fleming K, Ackerman A, Engelman D. The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody. Journal Of Molecular Biology 1997, 272: 266-275. PMID: 9299353, DOI: 10.1006/jmbi.1997.1236.Peer-Reviewed Original ResearchConceptsSodium dodecylsulfateVan der Waals interactionsAnalytical ultracentrifugationDer Waals interactionsFree energyMolecular association eventsEnergy of dimerizationOctyl etherWaals interactionsMolecular modelingRelative energy scaleDetergent environmentReversible associationEnergy differenceSedimentation equilibriumMonomersTransmembrane α-helicesNon-denaturing detergent solutionsDimer formationΑ-helixDimer stateAssociation eventsDetergent solutionDissociationHelix
1968
Characterization of the plasma membrane of Mycoplasma laidlawii. III. The formation and aggregation of small lipoprotein structures derived from sodium dodecyl sulfate-solubilized membrane components
Engelman D, Morowitz H. Characterization of the plasma membrane of Mycoplasma laidlawii. III. The formation and aggregation of small lipoprotein structures derived from sodium dodecyl sulfate-solubilized membrane components. Biochimica Et Biophysica Acta 1968, 150: 376-384. PMID: 5650390, DOI: 10.1016/0005-2736(68)90136-3.Peer-Reviewed Original ResearchConceptsMembrane componentsSucrose density gradient centrifugationPlasma membraneSame proteinMycoplasma laidlawiiAnalytical ultracentrifugationDensity gradient centrifugationBuoyant densityGradient centrifugationProteinLipoprotein structureProtein ratioDivalent cationsLipoprotein aggregatesMembraneLarge aggregatesM Mg2LaidlawiiAggregatesLipidsUltracentrifugationSingle peak
1967
Characterization of the plasma membrane of Mycoplasma laidlawii. I. Sodium dodecyl sulfate solubilization
Engelman D, Terry T, Morowitz H. Characterization of the plasma membrane of Mycoplasma laidlawii. I. Sodium dodecyl sulfate solubilization. Biochimica Et Biophysica Acta 1967, 135: 381-390. PMID: 6048810, DOI: 10.1016/0005-2736(67)90028-4.Peer-Reviewed Original ResearchConceptsSodium dodecyl sulfate solubilizationProtein-detergent complexesSeparate lipidsDetergent solubilizationAnalytical ultracentrifugationPlasma membraneLipoprotein subunitsSchlieren peakSchlieren patternsSolubilizationDistribution of proteinsPreparationSolubilized membrane preparationsMembrane proteinsMembraneIntermediatesMycoplasma laidlawiiDensity gradient sedimentationComplexesMembrane preparationsProteinCharacterizationLipidsPropertiesUltracentrifugation