2013
Multiscale data sampling and function extension
Bermanis A, Averbuch A, Coifman R. Multiscale data sampling and function extension. Applied And Computational Harmonic Analysis 2013, 34: 15-29. DOI: 10.1016/j.acha.2012.03.002.Peer-Reviewed Original ResearchSequence of approximationsGaussian kernel matrixData pointsAdaptive gridSpecial decompositionMultiscale schemeKernel matrixMultiscale decompositionGaussian kernelInterpolation methodMutual distanceData samplingFine hierarchyExtension methodEmpirical functionHierarchical procedureFunction extensionApproximationExtensionDecompositionPointKernelSchemeSubsamplingGrid
2006
Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions
Coifman R, Lafon S. Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions. Applied And Computational Harmonic Analysis 2006, 21: 31-52. DOI: 10.1016/j.acha.2005.07.005.Peer-Reviewed Original ResearchEntire space RnProlate spheroidal wave functionsLaplace-Beltrami operatorSpheroidal wave functionsFunction fSubmanifold of RnNyström methodSpace RnFourier modesSample extensionGeometric harmonicsEmpirical functionWave functionsSimple schemeExtension schemeLarge domainsSpecific familySchemeRnIntrinsic frequency spectrumExtensionFrequency spectrumSubmanifoldsEigenfunctionsSlepian