2022
Acute effects of ketamine and esketamine on cognition in healthy subjects: A meta-analysis
Zhornitsky S, Tourjman V, Pelletier J, Assaf R, Li CR, Potvin S. Acute effects of ketamine and esketamine on cognition in healthy subjects: A meta-analysis. Progress In Neuro-Psychopharmacology And Biological Psychiatry 2022, 118: 110575. PMID: 35568275, DOI: 10.1016/j.pnpbp.2022.110575.Peer-Reviewed Original ResearchConceptsVerbal learningCognitive domainsResponse inhibitionAcute ketamine administrationVerbal learning/memorySpeed of processingLearning/memorySocial cognitionVerbal memoryExecutive functionVisual learningVisuospatial abilitiesMemory figuresCognitionMemoryCognitive impairmentAcute ketamineKetamine administrationEffect sizeLearningImpairmentModerate impairmentDeficitsNegative effectsHealthy individuals
2020
Acute effects of partial CB1 receptor agonists on cognition – A meta-analysis of human studies
Zhornitsky S, Pelletier J, Assaf R, Giroux S, Li CR, Potvin S. Acute effects of partial CB1 receptor agonists on cognition – A meta-analysis of human studies. Progress In Neuro-Psychopharmacology And Biological Psychiatry 2020, 104: 110063. PMID: 32791166, DOI: 10.1016/j.pnpbp.2020.110063.Peer-Reviewed Original ResearchConceptsVerbal learning/memorySpeed of processingLearning/memoryCognitive domainsResidual cognitive effectsChronic cannabis usersAcute cannabis consumptionExecutive functionCognitive effectsCannabis usersImpulsivityEffect size estimatesMemoryCognitive dysfunctionCannabis consumptionCognitionCB1 receptor agonistDeficitsModerate impairmentProcessingAnalysis of routesImpairmentIntravenous administration studyComprehensive Meta-AnalysisNegative effects
2018
Levodopa improves response inhibition and enhances striatal activation in early-stage Parkinson's disease
Manza P, Schwartz G, Masson M, Kann S, Volkow ND, Li CR, Leung HC. Levodopa improves response inhibition and enhances striatal activation in early-stage Parkinson's disease. Neurobiology Of Aging 2018, 66: 12-22. PMID: 29501966, PMCID: PMC6436810, DOI: 10.1016/j.neurobiolaging.2018.02.003.Peer-Reviewed Original ResearchConceptsEarly-stage Parkinson's diseaseParkinson's diseaseDopaminergic medicationAdvanced Parkinson's diseaseStriatal activationResponse inhibitionRole of dopaminergicAge-matched controlsFunctional magnetic resonance imagingMagnetic resonance imagingExecutive functionLevodopa monotherapyMultiple medicationsMotor symptomsSignificant group differencesPD groupStop-signal taskAdvanced stageLevodopaResonance imagingMedicationsFunctional connectivityCritical executive functionMotor inhibitionPatients
2015
Independent component analysis of functional networks for response inhibition: Inter‐subject variation in stop signal reaction time
Zhang S, Tsai S, Hu S, Xu J, Chao HH, Calhoun VD, Li C. Independent component analysis of functional networks for response inhibition: Inter‐subject variation in stop signal reaction time. Human Brain Mapping 2015, 36: 3289-3302. PMID: 26089095, PMCID: PMC4545723, DOI: 10.1002/hbm.22819.Peer-Reviewed Original ResearchConceptsStop-signal reaction timeStop-signal taskCognitive controlSignal reaction timeResponse inhibitionStop successBeta weightsReaction timeCritical executive functionFunctional networksIndependent component analysisExecutive functionError trialsSignal taskComponent processesMotor preparationBrain networksBehavioral validityMotor regionsRace modelLinear modelingGeneral linear modelingLarge sampleIndependent componentsFMRI
2014
Error-related functional connectivity of the thalamus in cocaine dependence
Zhang S, Hu S, Bednarski SR, Erdman E, Li CS. Error-related functional connectivity of the thalamus in cocaine dependence. NeuroImage Clinical 2014, 4: 585-592. PMID: 24936409, PMCID: PMC4053644, DOI: 10.1016/j.nicl.2014.01.015.Peer-Reviewed Original ResearchConceptsVentral medial prefrontal cortexFunctional connectivityCognitive controlGeneralized psychophysiological interaction analysisTask-related processesPsychophysiological interaction analysisSubgenual anterior cingulate cortexCocaine dependenceMedial prefrontal cortexAnterior cingulate cortexError processingExecutive functionCocaine-dependent patientsPrefrontal cortexCingulate cortexRelated activationSubstance misuseCocaine useDrug useThalamic connectivity
2011
Functional networks for cognitive control in a stop signal task: Independent component analysis
Zhang S, Li C. Functional networks for cognitive control in a stop signal task: Independent component analysis. Human Brain Mapping 2011, 33: 89-104. PMID: 21365716, PMCID: PMC3674850, DOI: 10.1002/hbm.21197.Peer-Reviewed Original ResearchConceptsStop-signal taskCognitive controlFronto-parietal networkStop successError processingSignal taskComponent processesFunctional networksLeft fronto-parietal networkRight fronto-parietal networkSelf-referential processingCritical executive functionCortico-subcortical networksAttentional monitoringExecutive functionResponse inhibitionError trialsNeural processesIndependent component analysisBehavioral engagementMotor preparationMotor cortical networkCortical networksSE trialsLinear modeling
2010
A cerebellar thalamic cortical circuit for error-related cognitive control
Ide JS, Li CS. A cerebellar thalamic cortical circuit for error-related cognitive control. NeuroImage 2010, 54: 455-464. PMID: 20656038, PMCID: PMC2962720, DOI: 10.1016/j.neuroimage.2010.07.042.Peer-Reviewed Original ResearchConceptsPost-error slowingAnterior cingulate cortexVentrolateral prefrontal cortexVLPFC activationGranger causality mappingSupplementary motor areaCognitive controlExecutive functionBehavioral adjustmentError-related cognitive controlDorsal anterior cingulate cortexPost-error processingError-related activityBrain regionsCortical circuitsVLPFC activityPrefrontal activitySignal taskError detectionGreater activationPrefrontal cortexCingulate cortexSubcortical activationThalamic-cortical circuitMotor area
2004
Do schizophrenia patients make more perseverative than non-perseverative errors on the Wisconsin Card Sorting Test? A meta-analytic study
Li CS. Do schizophrenia patients make more perseverative than non-perseverative errors on the Wisconsin Card Sorting Test? A meta-analytic study. Psychiatry Research 2004, 129: 179-190. PMID: 15590045, DOI: 10.1016/j.psychres.2004.06.016.Peer-Reviewed Original ResearchConceptsSchizophrenia patientsWisconsin Card Sorting TestNon-perseverative errorsCard Sorting TestStudy of patientsInhibitory functionSorting TestHealthy controlsPatientsPerseverative errorsHealthy participantsSchizophreniaExecutive functionMeta-analytic studyMarginal levelsComparable numberHigher number