2022
Plasmodium infection is associated with cross-reactive antibodies to carbohydrate epitopes on the SARS-CoV-2 Spike protein
Lapidus S, Liu F, Casanovas-Massana A, Dai Y, Huck J, Lucas C, Klein J, Filler R, Strine M, Sy M, Deme A, Badiane A, Dieye B, Ndiaye I, Diedhiou Y, Mbaye A, Diagne C, Vigan-Womas I, Mbengue A, Sadio B, Diagne M, Moore A, Mangou K, Diallo F, Sene S, Pouye M, Faye R, Diouf B, Nery N, Costa F, Reis M, Muenker M, Hodson D, Mbarga Y, Katz B, Andrews J, Campbell M, Srivathsan A, Kamath K, Baum-Jones E, Faye O, Sall A, Vélez J, Cappello M, Wilson M, Ben-Mamoun C, Tedder R, McClure M, Cherepanov P, Somé F, Dabiré R, Moukoko C, Ouédraogo J, Boum Y, Shon J, Ndiaye D, Wisnewski A, Parikh S, Iwasaki A, Wilen C, Ko A, Ring A, Bei A. Plasmodium infection is associated with cross-reactive antibodies to carbohydrate epitopes on the SARS-CoV-2 Spike protein. Scientific Reports 2022, 12: 22175. PMID: 36550362, PMCID: PMC9778468, DOI: 10.1038/s41598-022-26709-7.Peer-Reviewed Original ResearchConceptsCross-reactive antibodiesSARS-CoV-2Positive SARS-CoV-2 antibody resultsPositive SARS-CoV-2 antibodiesSARS-CoV-2 reactivitySARS-CoV-2 antibodiesAcute malaria infectionSpike proteinAntibody test resultsPre-pandemic samplesMalaria-endemic countriesPopulation-level immunityMalaria-endemic regionsSpike S1 subunitNon-endemic countriesSARS-CoV-2 spike proteinSARS-CoV-2 proteinsPopulation-level exposureCOVID-19 transmissionMalaria exposureFalse-positive resultsMalaria infectionDisease burdenPlasmodium infectionAntibody results
2021
Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity
Lucas C, Vogels CBF, Yildirim I, Rothman JE, Lu P, Monteiro V, Gehlhausen JR, Campbell M, Silva J, Tabachnikova A, Peña-Hernandez MA, Muenker MC, Breban MI, Fauver JR, Mohanty S, Huang J, Shaw A, Ko A, Omer S, Grubaugh N, Iwasaki A. Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity. Nature 2021, 600: 523-529. PMID: 34634791, PMCID: PMC9348899, DOI: 10.1038/s41586-021-04085-y.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 variantsMRNA vaccine-induced immunityT-cell activation markersSARS-CoV-2 antibodiesSecond vaccine doseVaccine-induced immunityCell activation markersT cell responsesHigh antibody titresSARS-CoV-2Vaccine boosterVaccine doseActivation markersVaccine dosesHumoral immunityAntibody titresMRNA vaccinesVitro stimulationNeutralization capacityNeutralization responseCell responsesE484KNucleocapsid peptideAntibody-binding sitesGreater reductionTracking smell loss to identify healthcare workers with SARS-CoV-2 infection
Weiss JJ, Attuquayefio TN, White EB, Li F, Herz RS, White TL, Campbell M, Geng B, Datta R, Wyllie AL, Grubaugh ND, Casanovas-Massana A, Muenker MC, Moore AJ, Handoko R, Iwasaki A, Martinello RA, Ko AI, Small DM, Farhadian SF, Team T. Tracking smell loss to identify healthcare workers with SARS-CoV-2 infection. PLOS ONE 2021, 16: e0248025. PMID: 33657167, PMCID: PMC7928484, DOI: 10.1371/journal.pone.0248025.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionSARS-CoV-2 positive healthcare workersSmell lossHealthcare workersHome assessmentNeurological symptomsPositive SARS-CoV-2 testSARS-CoV-2 test positivitySARS-CoV-2 testPolymerase chain reaction testingReal-time quantitative polymerase chain reaction testingQuantitative polymerase chain reaction testingCOVID-19 patientsHigh-risk groupHigh-risk individualsSARS-CoV-2Self-reported changesProspective studyTest positivityAsymptomatic infectionSymptom SurveyVulnerable patientsHigh riskPositive testRisk individuals
2020
Detection of SARS-CoV-2 RNA by multiplex RT-qPCR
Kudo E, Israelow B, Vogels CBF, Lu P, Wyllie AL, Tokuyama M, Venkataraman A, Brackney DE, Ott IM, Petrone ME, Earnest R, Lapidus S, Muenker MC, Moore AJ, Casanovas-Massana A, Team Y, Omer SB, Dela Cruz CS, Farhadian SF, Ko AI, Grubaugh ND, Iwasaki A. Detection of SARS-CoV-2 RNA by multiplex RT-qPCR. PLOS Biology 2020, 18: e3000867. PMID: 33027248, PMCID: PMC7571696, DOI: 10.1371/journal.pbio.3000867.Peer-Reviewed Original ResearchMeSH KeywordsBetacoronavirusCase-Control StudiesClinical Laboratory TechniquesCoronavirus InfectionsCOVID-19COVID-19 TestingDNA PrimersHEK293 CellsHumansLimit of DetectionMultiplex Polymerase Chain ReactionNasopharynxPandemicsPneumonia, ViralReagent Kits, DiagnosticReverse Transcriptase Polymerase Chain ReactionRNA, ViralSARS-CoV-2United StatesConceptsSARS-CoV-2 RNAMultiplex RT-qPCRRT-qPCRSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testingSARS-CoV-2Quantitative reverse transcription PCRCycle threshold valuesReverse transcription-PCRRT-qPCR assaysDisease controlMultiplex RT-qPCR assayTranscription-PCRAssaysSingle assayLow copy numberSaliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2
Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, Warren JL, Geng B, Muenker MC, Moore AJ, Vogels CBF, Petrone ME, Ott IM, Lu P, Venkataraman A, Lu-Culligan A, Klein J, Earnest R, Simonov M, Datta R, Handoko R, Naushad N, Sewanan LR, Valdez J, White EB, Lapidus S, Kalinich CC, Jiang X, Kim DJ, Kudo E, Linehan M, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takahashi T, Taura M, Weizman OE, Wong P, Yang Y, Bermejo S, Odio CD, Omer SB, Dela Cruz CS, Farhadian S, Martinello RA, Iwasaki A, Grubaugh ND, Ko AI. Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2. New England Journal Of Medicine 2020, 383: 1283-1286. PMID: 32857487, PMCID: PMC7484747, DOI: 10.1056/nejmc2016359.Peer-Reviewed Original Research