Featured Publications
A framework for understanding selection bias in real-world healthcare data
Kundu R, Shi X, Morrison J, Barrett J, Mukherjee B. A framework for understanding selection bias in real-world healthcare data. Journal Of The Royal Statistical Society Series A (Statistics In Society) 2024, 187: 606-635. PMID: 39281782, PMCID: PMC11393555, DOI: 10.1093/jrsssa/qnae039.Peer-Reviewed Original ResearchElectronic health recordsSelection biasAssociation of cancerMultiple sources of biasHealth recordsHealthcare systemSources of biasReal-world healthcare dataBinary outcomesEstimation of associated parametersHealthcare dataReal-world dataPotential biasSample sizeStandard errorData exampleVariance formulaAnalysis of real-world dataAssociationSimulation studyWeighting approachBiological sexAssociated parametersBiasMultiple sources
2023
An inverse probability weighted regression method that accounts for right‐censoring for causal inference with multiple treatments and a binary outcome
Yu Y, Zhang M, Mukherjee B. An inverse probability weighted regression method that accounts for right‐censoring for causal inference with multiple treatments and a binary outcome. Statistics In Medicine 2023, 42: 3699-3715. PMID: 37392070, DOI: 10.1002/sim.9826.Peer-Reviewed Original ResearchConceptsRight censoringWeighted score functionCausal treatment effectsAverage treatment effectAsymptotic propertiesCensored componentPre-specified time windowEstimation consistencyRobustness propertiesSimulation studyBinary outcomesPresence of confoundersCensoringScoring functionInverse probabilityTreatment effectsEstimationSources of biasInferenceLetter CComparative effectiveness researchTreatment switchRegression methodLogistic regression modelsInsurance claims database
2022
Case studies in bias reduction and inference for electronic health record data with selection bias and phenotype misclassification
Beesley L, Mukherjee B. Case studies in bias reduction and inference for electronic health record data with selection bias and phenotype misclassification. Statistics In Medicine 2022, 41: 5501-5516. PMID: 36131394, PMCID: PMC9826451, DOI: 10.1002/sim.9579.Peer-Reviewed Original ResearchConceptsElectronic health recordsElectronic health record data analysisElectronic health record settingsLeverages external data sourcesElectronic health record dataPopulation-based data sourcesEHR-based researchLongitudinal health informationUniversity of Michigan Health SystemHealth record dataSelection biasPopulation-based researchMichigan Health SystemMultiple sources of biasFactors related to selectionPatient-level dataHealth recordsHealth systemHealth informationPhenotype misclassificationSummary estimatesPhenotyping errorsCancer diagnosisSources of biasRecord data