2021
A model for the assessment, care, and treatment of suicidal risk within the military intelligence community
Van Dillen T, Kane R, Bunney B, Feuerstein S, Hopkins C, Raimo J, Stubbs T, Jobes D. A model for the assessment, care, and treatment of suicidal risk within the military intelligence community. Military Psychology 2021, 34: 345-351. PMID: 38536342, PMCID: PMC10013476, DOI: 10.1080/08995605.2021.1962185.Peer-Reviewed Original ResearchArmy Public Health CenterBehavioral healthBehavioral health accessPublic Health CenterBehavioral health providersHealth assessment surveyHealth centersHealth promotionSleep healthSuicidal riskHealth providersHealth accessSurgeon's officeCare deliveryClinical suicidologyHealth stigmaSuicide behaviorHealth assessmentWellness modelHealthAssessment surveySuicideCareFocus groupsReport findings
2012
Bursting as a source of non‐linear determinism in the firing patterns of nigral dopamine neurons
Jeong J, Shi W, Hoffman R, Oh J, Gore JC, Bunney BS, Peterson BS. Bursting as a source of non‐linear determinism in the firing patterns of nigral dopamine neurons. European Journal Of Neuroscience 2012, 36: 3214-3223. PMID: 22831464, PMCID: PMC3490015, DOI: 10.1111/j.1460-9568.2012.08238.x.Peer-Reviewed Original ResearchConceptsNigral dopamine neuronsDA neuronsFiring patternsComplex firing patternsDopamine neuronsBursting activityChloral hydrate-anesthetized ratsHalothane-anesthetized ratsRat substantia nigraReward-related learningSubstantia nigraPhasic burstsFiring activityNeuronsBursting neuronsRatsStochastic firing patternsVivoNon-linear deterministic structureActivityNigra
2007
Oscillatory firing of dopamine neurons: Differences between cells in the substantia nigra and ventral tegmental area
Zhang D, Yang S, Jin G, Bunney B, Shi W. Oscillatory firing of dopamine neurons: Differences between cells in the substantia nigra and ventral tegmental area. Synapse 2007, 62: 169-175. PMID: 18081182, DOI: 10.1002/syn.20479.Peer-Reviewed Original ResearchConceptsVentral tegmental areaDA neuronsSubstantia nigraDopamine neuronsTegmental areaSlow oscillationsChloral hydrate-anesthetized ratsSN DA neuronsVTA DA neuronsDegree of burstingVariability of firingAfferent inputAdjacent substantia nigraOscillatory firingFiring rateNeuronsNeuronal oscillationsNigraCellsFiringRatsBrainImportant roleThe Neuroscience Research Program at the Connecticut Mental Health Center
Heninger G, Krystal J, Duman R, Bunney B, Bowers M, Aghajanian G. The Neuroscience Research Program at the Connecticut Mental Health Center. 2007, 77-95. DOI: 10.1002/9780470994580.ch4.Peer-Reviewed Original ResearchFunctional Coupling between the Prefrontal Cortex and Dopamine Neurons in the Ventral Tegmental Area
Gao M, Liu C, Yang S, Jin G, Bunney B, Shi W. Functional Coupling between the Prefrontal Cortex and Dopamine Neurons in the Ventral Tegmental Area. Journal Of Neuroscience 2007, 27: 5414-5421. PMID: 17507563, PMCID: PMC6672349, DOI: 10.1523/jneurosci.5347-06.2007.Peer-Reviewed Original ResearchConceptsVentral tegmental areaVTA DA neuronsDA neuronsPrefrontal cortexPFC neuronsDopamine neuronsTegmental areaAction potential-dependent DA releaseSlow oscillationsChloral hydrate-anesthetized ratsIntra-PFC infusionsFunctional couplingPFC terminalsVTA DAGlutamate releaseDA releaseExcitatory influenceRelay neuronsInhibitory influenceCell activityBrain functionNeuronsImportant new insightsCortexMultiple pathwaysClozapine Blocks D-Amphetamine-Induced Excitation of Dopamine Neurons in the Ventral Tegmental Area
Shi W, Zhang X, Pun C, Bunney B. Clozapine Blocks D-Amphetamine-Induced Excitation of Dopamine Neurons in the Ventral Tegmental Area. Neuropsychopharmacology 2007, 32: 1922-1928. PMID: 17299514, DOI: 10.1038/sj.npp.1301334.Peer-Reviewed Original ResearchConceptsD2-like receptorsDA neuronsVentral tegmental areaD-amphetamineDA receptorsExcitatory effectsTegmental areaΑ1 receptor antagonist prazosinAtypical antipsychotic drug clozapineChloral hydrate-anesthetized ratsTypical antipsychotic drug haloperidolCentral dopamine transmissionCurrent antipsychotic drugsReceptor antagonist prazosinAntipsychotic drug haloperidolAntipsychotic drug clozapineAntagonist prazosinExcitatory pathwaysDA transmissionDopamine neuronsΑ1 receptorsSystemic administrationAntipsychotic drugsExcitatory inputsIncomplete blockade
2003
Patricia Goldman-Rakic, 1937–2003
Aghajanian G, Bunney B, Holzman P. Patricia Goldman-Rakic, 1937–2003. Neuropsychopharmacology 2003, 28: 2218-2220. DOI: 10.1038/sj.npp.1300325.Peer-Reviewed Original Research
2000
Enhancement of NMDA‐induced current by the putative NR2B selective antagonist ifenprodil
Zhang X, Bunney B, Shi W. Enhancement of NMDA‐induced current by the putative NR2B selective antagonist ifenprodil. Synapse 2000, 37: 56-63. PMID: 10842351, DOI: 10.1002/(sici)1098-2396(200007)37:1<56::aid-syn6>3.0.co;2-d.Peer-Reviewed Original ResearchMeSH Keywords2-Amino-5-phosphonovalerateAnimalsDizocilpine MaleateDose-Response Relationship, DrugDrug SynergismElectrophysiologyExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsGlycineKynurenic AcidMaleMembrane PotentialsN-MethylaspartateOrgan Culture TechniquesPiperidinesPrefrontal CortexPyramidal CellsRatsRats, Sprague-DawleyReceptors, N-Methyl-D-AspartateSpermineConceptsLow NMDA concentrationsNMDA currentsNMDA concentrationReceptor affinityNMDA receptor affinityEffects of ifenprodilNR2B-selective antagonist ifenprodilEnhancement of NMDARat brain slicesNMDA receptorsAntagonist selectiveBrain slicesSubcortical areasNR2B subunitNMDANoncompetitive antagonistIfenprodilCGP37849Same concentrationKynurenatePrevious studiesAntagonistReceptorsDual Effects of d-Amphetamine on Dopamine Neurons Mediated by Dopamine and Nondopamine Receptors
Shi W, Pun C, Zhang X, Jones M, Bunney B. Dual Effects of d-Amphetamine on Dopamine Neurons Mediated by Dopamine and Nondopamine Receptors. Journal Of Neuroscience 2000, 20: 3504-3511. PMID: 10777813, PMCID: PMC6773133, DOI: 10.1523/jneurosci.20-09-03504.2000.Peer-Reviewed Original ResearchConceptsD2-like receptorsD-amphetamineDA cellsSelective D2 antagonist racloprideVivo single-unit recordingsFiring rateAlpha1-antagonist prazosinAlpha2 antagonist idazoxanAlpha-antagonist phenoxybenzamineD2 antagonist racloprideDA cell firingSingle-unit recordingsRelated psychostimulantsAntagonist idazoxanAntagonist phenoxybenzamineDA receptorsAntagonist prazosinAntagonist racloprideExcitatory effectsAlpha1 receptorsDopamine neuronsDopamine releaseCell firingInhibitory effectReceptorsAnatomic basis of sequence‐dependent predictability exhibited by nigral dopamine neuron firing patterns
Hoffman R, Shi W, Bunney B. Anatomic basis of sequence‐dependent predictability exhibited by nigral dopamine neuron firing patterns. Synapse 2000, 39: 133-138. PMID: 11180500, DOI: 10.1002/1098-2396(200102)39:2<133::aid-syn4>3.0.co;2-k.Peer-Reviewed Original Research
1999
Endogenous DA‐mediated feedback inhibition of DA neurons: Involvement of both D1‐ and D2‐like receptors
Shi W, Pun C, Smith P, Bunney B. Endogenous DA‐mediated feedback inhibition of DA neurons: Involvement of both D1‐ and D2‐like receptors. Synapse 1999, 35: 111-119. PMID: 10611636, DOI: 10.1002/(sici)1098-2396(200002)35:2<111::aid-syn3>3.0.co;2-7.Peer-Reviewed Original ResearchConceptsDA neuronsLike receptorsDA cellsEndogenous DAChloral hydrate-anesthetized ratsNigral DA cellsD2-like receptorsSingle-unit recordingsCerveau isolé preparationFeedback inhibitionParkinsonian animalsAntagonist racloprideAntagonist SCH23390DA releaseEndogenous dopamineD-amphetamineParkinson's diseaseUnit recordingsSCH23390Receptor activationBaseline activityReceptorsChloral hydrateNeuronsConcurrent activationOpposite modulation of cortical N-methyl-d-aspartate receptor-mediated responses by low and high concentrations of dopamine
Zheng P, Zhang X, Bunney B, Shi W. Opposite modulation of cortical N-methyl-d-aspartate receptor-mediated responses by low and high concentrations of dopamine. Neuroscience 1999, 91: 527-535. PMID: 10366010, DOI: 10.1016/s0306-4522(98)00604-6.Peer-Reviewed Original ResearchMeSH Keywords1-Methyl-3-isobutylxanthine2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepineAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsBenzazepinesDizocilpine MaleateDopamineDopamine AgonistsDopamine AntagonistsDose-Response Relationship, DrugExcitatory Amino Acid AntagonistsIn Vitro TechniquesMaleMembrane PotentialsPrefrontal CortexPyramidal CellsQuinoxalinesQuinpiroleRatsRats, Sprague-DawleyReceptors, N-Methyl-D-AspartateConceptsN-methyl-D-aspartate functionN-methyl-D-aspartate currentsN-methyl-D-aspartate (NMDA) receptor-mediated transmissionN-methyl-D-aspartate receptor-mediated responsesN-methyl-D-aspartate receptorsHigh concentrations dopamineReceptor-mediated transmissionD2 agonist quinpiroleD1 agonist SKF38393D1-like receptorsD-aspartate antagonistGlutamate-mediated neurotransmissionD2-like receptorsPresence of tetrodotoxinEffects of dopamineReceptor-mediated responsesWhole-cell recordingsD-aspartate agonistMedial prefrontal cortexBrief local applicationDizocilpine maleateAgonist SKF38393Concentration of dopamineCortical dopamineGlutamate transmission
1997
D1–D2 Interaction in Feedback Control of Midbrain Dopamine Neurons
Shi W, Smith P, Pun C, Millet B, Bunney B. D1–D2 Interaction in Feedback Control of Midbrain Dopamine Neurons. Journal Of Neuroscience 1997, 17: 7988-7994. PMID: 9315916, PMCID: PMC6793911, DOI: 10.1523/jneurosci.17-20-07988.1997.Peer-Reviewed Original ResearchConceptsD2-like receptorsDA cellsDA autoreceptorsDA neuronsD1 agonistLow dosesDopamine D1-like receptorsD1 inhibitionD1 effectNigral DA cellsMidbrain DA neuronsD2 agonist quinpiroleD1-like receptorsDA receptor subtypesMidbrain dopamine neuronsOnly low dosesDA receptorsEndogenous DAAgonist quinpiroleD2 agonistIntranigral applicationDopamine neuronsReceptor subtypesRat preparationTarget neuronsCharacterization of dopamine‐induced depolarization of prefrontal cortical neurons
Shi W, Zheng P, Liang X, Bunney B. Characterization of dopamine‐induced depolarization of prefrontal cortical neurons. Synapse 1997, 26: 415-422. PMID: 9215600, DOI: 10.1002/(sici)1098-2396(199708)26:4<415::aid-syn9>3.0.co;2-9.Peer-Reviewed Original ResearchConceptsEffects of dopaminePFC neuronsDA agonistsPrefrontal cortexAtypical antipsychotic drug clozapinePrefrontal cortical neuronsRat brain slicesAntipsychotic drug clozapineWhole-cell recordingsPFC pyramidal cellsSynaptic blockadeDA receptorsBeta antagonistDA antagonistsSubstantia nigraCortical neuronsPyramidal cellsBrain slicesDrug clozapineCell recordingsNeuronsAntagonistNonspecific mechanismsDopamineDepolarizationManaged Care, Health Care Reform, and Academic Psychiatry
Jacobs S, Hoge M, Sledge W, Bunney B. Managed Care, Health Care Reform, and Academic Psychiatry. Academic Psychiatry 1997, 21: 72-85. PMID: 24442844, DOI: 10.1007/bf03341902.Peer-Reviewed Original ResearchDopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs
Grace A, Bunney B, Moore H, Todd C. Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends In Neurosciences 1997, 20: 31-37. PMID: 9004417, DOI: 10.1016/s0166-2236(96)10064-3.Peer-Reviewed Original ResearchConceptsDepolarization blockAntipsychotic drugsDopamine systemNigrostriatal dopamine systemWeeks of treatmentExtrapyramidal side effectsAntipsychotic drug efficacyDopamine receptor antagonistDrug treatment resultsMesolimbic dopamine neuronsTreatment of schizophreniaDopamine neuron firingReceptor blockadeDopamine neuronsTherapeutic impactSide effectsClinical actionsDrug AdministrationTherapeutic efficacyTreatment resultsDrug efficacyTherapeutic actionPotential mechanismsDrugsEfficacy
1996
Effects of Lesions in the Medial Prefrontal Cortex on the Activity of Midbrain Dopamine Neurons
Shim S, Bunney B, Shi W. Effects of Lesions in the Medial Prefrontal Cortex on the Activity of Midbrain Dopamine Neurons. Neuropsychopharmacology 1996, 15: 437-441. PMID: 8914116, DOI: 10.1016/s0893-133x(96)00052-8.Peer-Reviewed Original ResearchConceptsVentral tegmental areaDA neuronsPrefrontal cortexSubstantia nigraPFC lesionsBursting activityFiring rateActive DA cellsSN DA neuronsActive DA neuronsMidbrain dopamine neuronsSingle-unit recordingsMedial prefrontal cortexDA cellsDopamine neuronsTegmental areaLocal injectionIbotenic acidUnit recordingsLesionsSame lesionNeuronsRatsActivityCortexChronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons.
Sklair-Tavron L, Shi W, Lane S, Harris H, Bunney B, Nestler E. Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 11202-11207. PMID: 8855333, PMCID: PMC38308, DOI: 10.1073/pnas.93.20.11202.Peer-Reviewed Original ResearchConceptsVTA dopamine neuronsVentral tegmental areaChronic morphine treatmentDopamine neuronsMorphine treatmentBrain regionsBrain-derived neurotrophic factorIntra-VTA infusionMorphine-treated ratsOpioid receptor antagonistChronic opiate exposureMesolimbic dopamine neuronsFluorescent dye Lucifer yellowMesolimbic dopamine functionMesolimbic dopamine systemImportant neural substrateDye Lucifer yellowNondopaminergic neuronsVTA neuronsChronic morphineOpiate exposureConcomitant treatmentDopaminergic neuronsNeurotrophic factorReceptor antagonistRole of the Amygdala in the Coordination of Behavioral, Neuroendocrine, and Prefrontal Cortical Monoamine Responses to Psychological Stress in the Rat
Goldstein L, Rasmusson A, Bunney B, Roth R. Role of the Amygdala in the Coordination of Behavioral, Neuroendocrine, and Prefrontal Cortical Monoamine Responses to Psychological Stress in the Rat. Journal Of Neuroscience 1996, 16: 4787-4798. PMID: 8764665, PMCID: PMC6579011, DOI: 10.1523/jneurosci.16-15-04787.1996.Peer-Reviewed Original ResearchConceptsAmygdala lesionsMonoaminergic systemsMetabolic activationAdrenocortical activationStress-induced freezing behaviorStress-induced exacerbationStress-induced freezingPosttraumatic stress disorderAnteromedial prefrontal cortexNorepinephrine metabolismMonoamine responseAfferent controlNeuroendocrine componentBilateral NMDAPFC dopamineSchizophrenic symptomsCentral nucleusMild stressPrefrontal cortexStress disorderPsychological stressLesionsDopamineStress activationUltrasonic vocalizations
1995
Psychiatric status after human fetal mesencephalic tissue transplantation in Parkinson's disease
Price L, Spencer D, Marek K, Robbins R, Leranth C, Farhi A, Naftolin F, Roth R, Bunney B, Hoffer P, Makuch R, Redmond D. Psychiatric status after human fetal mesencephalic tissue transplantation in Parkinson's disease. Biological Psychiatry 1995, 38: 498-505. PMID: 8562661, DOI: 10.1016/0006-3223(95)00129-5.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedBrain Tissue TransplantationCaudate NucleusDepressive DisorderDopamineFemaleFetal Tissue TransplantationFollow-Up StudiesHumansMaleMesencephalonMiddle AgedNeurocognitive DisordersNeuropsychological TestsPanic DisorderParkinson DiseasePostoperative ComplicationsProspective StudiesConceptsParkinson's diseasePsychiatric statusHuman fetal mesencephalic tissueAdrenal medullary graftsAdrenal medullary transplantationFetal mesencephalic tissueSystematic psychiatric assessmentPerioperative sequelaeMesencephalic tissuePsychiatric sequelaeCaudate nucleusPsychiatric assessmentNeurobiological effectsBehavioral symptomsTissue transplantationDiseasePatientsTransplantationSequelaeSuch episodesEpisodesGroup effectsStatusDeliriumDiscrete episodes