2003
Antisense basic fibroblast growth factor alters the time course of mitogen-activated protein kinase in arterialized vein graft remodeling
Yamashita A, Hanna AK, Hirata S, Dardik A, Sumpio BE. Antisense basic fibroblast growth factor alters the time course of mitogen-activated protein kinase in arterialized vein graft remodeling. Journal Of Vascular Surgery 2003, 37: 866-873. PMID: 12663990, DOI: 10.1067/mva.2003.130.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood Vessel ProsthesisCell Physiological PhenomenaEndothelium, VascularFibroblast Growth FactorsHyperplasiaJNK Mitogen-Activated Protein KinasesMitogen-Activated Protein KinasesModels, AnimalP38 Mitogen-Activated Protein KinasesProteinsRabbitsRegenerationRNA, AntisenseTime FactorsTransfectionVeinsConceptsProtein kinaseBasic fibroblast growth factorMAPK activationFibroblast growth factorMitogen-activated protein kinase (MAPK) familyC-Jun N-terminal protein kinaseProtein kinase familyExtracellular signal-regulated kinase 1/2Antisense basic fibroblast growth factorMitogen-activated protein kinaseSignal-regulated kinase 1/2Messenger RNA sequencesP38 kinase activationGrowth factor altersMAPK-dependent mechanismFibroblast growth factor activityGrowth factorKinase familyKinase activationGrowth factor activityPhosphorylation of MAPKsKinase 1/2RNA sequencesWestern blot analysisBasic fibroblast growth factor activity
2001
The Integrin-Mediated Cyclic Strain-Induced Signaling Pathway in Vascular Endothelial Cells
Frangos S, Knox R, Yano Y, Chen E, Di Luozzo G, Chen A, Sumpio B. The Integrin-Mediated Cyclic Strain-Induced Signaling Pathway in Vascular Endothelial Cells. Endothelium 2001, 8: 1-10. PMID: 11409847, DOI: 10.3109/10623320109063153.Peer-Reviewed Original ResearchConceptsMitogen-activated protein kinase (MAPK) familyCytoplasmic protein kinaseProtein kinase familySignal transduction pathwaysFocal adhesion kinaseExtracellular matrix receptorsProcess of phosphorylationEndothelial cellsKinase familySignal transductionTranscription factorsAdhesion kinaseProtein kinaseTransduction pathwaysMatrix receptorsGene expressionTyrosine residuesSignaling pathwaysCyclic circumferential strainVascular endothelial cellsPathwayKinaseIntegrinsHemodynamic forcesVasculature results
1999
Thrombospondin-1 regulation of smooth muscle cell chemotaxis is extracellular signal-regulated protein kinases 1/2 dependent
Gahtan V, Wang X, Willis A, Tuszynski G, Sumpio B. Thrombospondin-1 regulation of smooth muscle cell chemotaxis is extracellular signal-regulated protein kinases 1/2 dependent. Surgery 1999, 126: 203-207. PMID: 10455885, DOI: 10.1016/s0039-6060(99)70156-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalcium-Calmodulin-Dependent Protein KinasesCattleCell Adhesion MoleculesCells, CulturedChemotaxisDose-Response Relationship, DrugFocal Adhesion Protein-Tyrosine KinasesMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Mitogen-Activated Protein KinasesMuscle, Smooth, VascularProtein-Tyrosine KinasesThrombospondin 1ConceptsSmooth muscle cell chemotaxisTSP-1-induced chemotaxisThrombospondin-1Protein kinase familyExtracellular signal-regulated proteinExtracellular signal-regulated protein kinase 1/2Vascular smooth muscle cell chemotaxisProtein kinase 1/2Extracellular matrix proteinsCell chemotaxisSerum-free mediumPlatelet-derived growth factorKinase familyKinase 1/2Top chambersFunctional importanceMatrix proteinsERK1/2 activationWestern blot analysisERK1/2 inhibitorBlot analysisERK1/2VSMCPD98059VSMCs
1998
Molecular Basis for Tissue Expansion: Clinical Implications for the Surgeon
Takei T, Mills I, Arai K, Sumpio B. Molecular Basis for Tissue Expansion: Clinical Implications for the Surgeon. Plastic & Reconstructive Surgery 1998, 102: 247-258. PMID: 9655439, DOI: 10.1097/00006534-199807000-00044.Peer-Reviewed Original ResearchConceptsProtein kinase CTransduction pathwaysProtein kinase familySignal transduction pathwaysAlters cell morphologyIsoform-specific manner