Paying attention to attention in depression
Keller AS, Leikauf JE, Holt-Gosselin B, Staveland BR, Williams LM. Paying attention to attention in depression. Translational Psychiatry 2019, 9: 279. PMID: 31699968, PMCID: PMC6838308, DOI: 10.1038/s41398-019-0616-1.Peer-Reviewed Original ResearchMeSH KeywordsAttentional BiasBrainDepressive Disorder, MajorEmotionsHumansNeuropsychological TestsPrecision MedicineSelective Serotonin Reuptake InhibitorsConceptsGoal-directed attentionAttention impairmentEmotional functioningAspects of cognitionMajor depressive disorderConcentration difficultiesLarge-scale neural networksCognitive neuroscienceAttention influencesAttentional featuresAttention problemsNeural mechanismsConscious experienceNeurobiological mechanismsDepressed individualsBehavioral interventionsSensory informationBehavioral impairmentsMood featuresContext of MDDFuture researchBrain stimulationDay functionFunctioningImpairmentIntegrating sleep, neuroimaging, and computational approaches for precision psychiatry
Goldstein-Piekarski AN, Holt-Gosselin B, O’Hora K, Williams LM. Integrating sleep, neuroimaging, and computational approaches for precision psychiatry. Neuropsychopharmacology 2019, 45: 192-204. PMID: 31426055, PMCID: PMC6879628, DOI: 10.1038/s41386-019-0483-8.Peer-Reviewed Original ResearchMeSH KeywordsBrainComputational BiologyHumansMental DisordersNeuroimagingPrecision MedicinePsychiatrySleepSleep Wake DisordersConceptsSleep impairmentAnxiety disordersBrain circuit dysfunctionPrecision psychiatryLarge-scale neural circuitsDefault mode networkMode networkAffective networkPoor sleep qualityExplanatory roleDistal featuresMood symptomsMoodNetwork dysfunctionSleep qualityNeural circuitsSleep disturbancesTestable frameworkCircuit dysfunctionImpairmentPersonalized tailoringDigital phenotypingFuture directionsMachine learning approachesCurrent diagnostic criteria