2022
US-align: universal structure alignments of proteins, nucleic acids, and macromolecular complexes
Zhang C, Shine M, Pyle AM, Zhang Y. US-align: universal structure alignments of proteins, nucleic acids, and macromolecular complexes. Nature Methods 2022, 19: 1109-1115. PMID: 36038728, DOI: 10.1038/s41592-022-01585-1.Peer-Reviewed Original ResearchConceptsStructure comparisonStructural biology studiesStructure alignmentDNA dockingMacromolecular complexesBiology studiesMultiple structure alignmentNucleic acidsDifferent moleculesRNAProteinFundamental importanceDNAComplex structureDockingUniversal protocolAlignmentExtensive optimizationFunctionComplexesChapter Three Monitoring functional RNA binding of RNA-dependent ATPase enzymes such as SF2 helicases using RNA dependent ATPase assays: A RIG-I case study
Guo R, Pyle AM. Chapter Three Monitoring functional RNA binding of RNA-dependent ATPase enzymes such as SF2 helicases using RNA dependent ATPase assays: A RIG-I case study. Methods In Enzymology 2022, 673: 39-52. PMID: 35965013, DOI: 10.1016/bs.mie.2022.03.064.Peer-Reviewed Original ResearchConceptsEnzymatic ATPase activitySuperfamily 1Nucleic acid-dependent ATPasesATPase activityRNA-dependent ATPaseSimple reporter systemNucleic acid bindingNucleic acid ligandsNucleic acidsATPase enzymeSF2 helicaseAcid ligandsKinetic parametersRNA associationSF2 helicasesRNA bindingMultitude of processesMotor proteinsBiological functionsSF1 helicasesReporter systemFunctional bindingConformational changesDirect binding assaysAcid bindingA molecular beacon assay for monitoring RNA splicing
Omran QQ, Fedorova O, Liu T, Pyle AM. A molecular beacon assay for monitoring RNA splicing. Nucleic Acids Research 2022, 50: e74-e74. PMID: 35438748, PMCID: PMC9303364, DOI: 10.1093/nar/gkac242.Peer-Reviewed Original ResearchConceptsMolecular beaconsMolecular beacon assayHigher fluorescent signalHigh-throughput screening platformSmall moleculesAutocatalyzed reactionMolecular beacon approachKinetic characterizationReactionSmall molecule targetingInhibition constantsScreening platformSmall molecule inhibitorsFluorescent signalMolecule targetingMolecule inhibitorsMoleculesAMIGOS III: pseudo-torsion angle visualization and motif-based structure comparison of nucleic acids
Shine M, Zhang C, Pyle AM. AMIGOS III: pseudo-torsion angle visualization and motif-based structure comparison of nucleic acids. Bioinformatics 2022, 38: 2937-2939. PMID: 35561202, PMCID: PMC9113296, DOI: 10.1093/bioinformatics/btac207.Peer-Reviewed Original ResearchCSSR: assignment of secondary structure to coarse‐grained RNA tertiary structures
Zhang C, Pyle AM. CSSR: assignment of secondary structure to coarse‐grained RNA tertiary structures. Acta Crystallographica Section D, Structural Biology 2022, 78: 466-471. PMID: 35362469, PMCID: PMC8972804, DOI: 10.1107/s2059798322001292.Peer-Reviewed Original Research
2020
Sequencing and Structure Probing of Long RNAs Using MarathonRT: A Next-Generation Reverse Transcriptase
Guo LT, Adams RL, Wan H, Huston NC, Potapova O, Olson S, Gallardo CM, Graveley BR, Torbett BE, Pyle AM. Sequencing and Structure Probing of Long RNAs Using MarathonRT: A Next-Generation Reverse Transcriptase. Journal Of Molecular Biology 2020, 432: 3338-3352. PMID: 32259542, PMCID: PMC7556701, DOI: 10.1016/j.jmb.2020.03.022.Peer-Reviewed Original ResearchConceptsLong RNA moleculesLong RNAsRNA moleculesRNA base modificationsGroup II intronsMutational profilingTranscriptome compositionRNA metabolismRNA researchBase modificationsPrimer extensionTool enzymeDiverse aspectsMixed populationEnzymeReverse transcriptionRNAStructural complexityReverse transcriptaseProfilingTranscriptase enzymeIntronsTranscription
2014
The RIG-I ATPase core has evolved a functional requirement for allosteric stabilization by the Pincer domain
Rawling DC, Kohlway AS, Luo D, Ding SC, Pyle AM. The RIG-I ATPase core has evolved a functional requirement for allosteric stabilization by the Pincer domain. Nucleic Acids Research 2014, 42: 11601-11611. PMID: 25217590, PMCID: PMC4191399, DOI: 10.1093/nar/gku817.Peer-Reviewed Original ResearchConceptsATPase coreRetinoic acid-inducible gene IAcid-inducible gene INon-self RNASeries of mutationsActivity of RIGMetazoan cellsHelicase coreAllosteric controlTerminal domainPattern recognition receptorsAlpha-helixBiophysical analysisGene IAllosteric stabilizationType I interferonEnzymatic activityRecognition receptorsViral RNAStructural studiesRNAI interferonAdjacent domainsDomainImportant role
2013
Defining the functional determinants for RNA surveillance by RIG‐I
Kohlway A, Luo D, Rawling DC, Ding SC, Pyle AM. Defining the functional determinants for RNA surveillance by RIG‐I. EMBO Reports 2013, 14: 772-779. PMID: 23897087, PMCID: PMC3790051, DOI: 10.1038/embor.2013.108.Peer-Reviewed Original ResearchConceptsMelanoma differentiation-associated gene 5Robust ATPase activityDuplex RNA substrateMinimal functional unitATPase activityRetinoic acid-inducible geneInnate immune machineryAcid-inducible geneRNA surveillanceDifferentiation-associated gene 5RNA substratesIntracellular RNA sensorsDuplex RNARNA complexRNA targetsGene 5RNA virusesDistinct conformationsRNA sensorsDsRNA complexImmune machineryRNA duplexesInterferon responseFunctional determinantsFunctional units
2005
Choosing between DNA and RNA: the polymer specificity of RNA helicase NPH-II
Kawaoka J, Pyle AM. Choosing between DNA and RNA: the polymer specificity of RNA helicase NPH-II. Nucleic Acids Research 2005, 33: 644-649. PMID: 15681616, PMCID: PMC548353, DOI: 10.1093/nar/gki208.Peer-Reviewed Original Research
2004
The identification of novel RNA structural motifs using COMPADRES: an automated approach to structural discovery
Wadley LM, Pyle AM. The identification of novel RNA structural motifs using COMPADRES: an automated approach to structural discovery. Nucleic Acids Research 2004, 32: 6650-6659. PMID: 15608296, PMCID: PMC545444, DOI: 10.1093/nar/gkh1002.Peer-Reviewed Original ResearchPeriodic cycles of RNA unwinding and pausing by hepatitis C virus NS3 helicase
Serebrov V, Pyle AM. Periodic cycles of RNA unwinding and pausing by hepatitis C virus NS3 helicase. Nature 2004, 430: 476-480. PMID: 15269774, DOI: 10.1038/nature02704.Peer-Reviewed Original Research
2003
An Alternative Route for the Folding of Large RNAs: Apparent Two-state Folding by a Group II Intron Ribozyme
Su LJ, Brenowitz M, Pyle AM. An Alternative Route for the Folding of Large RNAs: Apparent Two-state Folding by a Group II Intron Ribozyme. Journal Of Molecular Biology 2003, 334: 639-652. PMID: 14636593, DOI: 10.1016/j.jmb.2003.09.071.Peer-Reviewed Original ResearchRNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space
Duarte CM, Wadley LM, Pyle AM. RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Nucleic Acids Research 2003, 31: 4755-4761. PMID: 12907716, PMCID: PMC169959, DOI: 10.1093/nar/gkg682.Peer-Reviewed Original ResearchConceptsRNA structureRepertoire of RNANovel RNA structuresNew RNA structuresStructural genomicsRNA functionRNA conformational spaceRibosomal subunitRNA researchRNA moleculesRNA motifsRNA structure comparisonMotif searchTertiary structureConformational changesStructure comparisonNew motifMotifReduced representationConformational spaceMacromolecular structureFuture adaptationGenomicsMajor regionsSubunitsThe Pathway for DNA Recognition and RNA Integration by a Group II Intron Retrotransposon
Aizawa Y, Xiang Q, Lambowitz AM, Pyle AM. The Pathway for DNA Recognition and RNA Integration by a Group II Intron Retrotransposon. Molecular Cell 2003, 11: 795-805. PMID: 12667460, DOI: 10.1016/s1097-2765(03)00069-8.Peer-Reviewed Original ResearchConceptsGroup II intron RNPsIntron-encoded proteinTarget site specificityMobile genetic elementsIntron invasionDNA recognitionDNA bindingGenetic elementsConformational changesDuplex DNADNA targetsSite specificityDNAStrand DNAComplex cascadeReverse transcriptionRNPInvasionRetrotransposonsSplicingTranscriptionProteinKinetic frameworkPathwayCascade
2002
Productive folding to the native state by a group II intron ribozyme11Edited by D. Draper
Swisher JF, Su LJ, Brenowitz M, Anderson VE, Pyle AM. Productive folding to the native state by a group II intron ribozyme11Edited by D. Draper. Journal Of Molecular Biology 2002, 315: 297-310. PMID: 11786013, DOI: 10.1006/jmbi.2001.5233.Peer-Reviewed Original Research
2000
[10] Using DNAzylnes to cut, process, and map RNA molecules for structural studies or modification
Pyle AM, Chu VT, Jankowsky E, Boudvillain M. [10] Using DNAzylnes to cut, process, and map RNA molecules for structural studies or modification. Methods In Enzymology 2000, 317: 140-146. PMID: 10829278, DOI: 10.1016/s0076-6879(00)17012-0.Peer-Reviewed Original ResearchConceptsStructural studiesTypes of DNAzymeTemplate-directed ligationDNAzyme reactionDNAzyme moleculesSimple DNA moleculesDNAzymeDivalent ionsAnalytical scaleMoleculesDNA moleculesAddition of Mg2Crystallographic applicationsRNA targetsRNA moleculesCatalytic coreIonsLong RNAsReactionModificationDifferent applicationsInexpensive wayRNA fragmentsMg2Incorporation
1998
More than one way to splice an RNA: branching without a bulge and splicing without branching in group II introns.
Chu VT, Liu Q, Podar M, Perlman PS, Pyle AM. More than one way to splice an RNA: branching without a bulge and splicing without branching in group II introns. RNA 1998, 4: 1186-202. PMID: 9769094, PMCID: PMC1369692, DOI: 10.1017/s1355838298980724.Peer-Reviewed Original Research
1992
RNA catalysis by a group I ribozyme. Developing a model for transition state stabilization.
Cech TR, Herschlag D, Piccirilli JA, Pyle AM. RNA catalysis by a group I ribozyme. Developing a model for transition state stabilization. Journal Of Biological Chemistry 1992, 267: 17479-17482. PMID: 1381347, DOI: 10.1016/s0021-9258(19)37064-4.Peer-Reviewed Original Research