2022
Evaluation of unsupervised 30-second chair stand test performance assessed by wearable sensors to predict fall status in multiple sclerosis
Tulipani L, Meyer B, Allen D, Solomon A, McGinnis R. Evaluation of unsupervised 30-second chair stand test performance assessed by wearable sensors to predict fall status in multiple sclerosis. Gait & Posture 2022, 94: 19-25. PMID: 35220031, PMCID: PMC9086135, DOI: 10.1016/j.gaitpost.2022.02.016.Peer-Reviewed Original ResearchConceptsWearable sensorsFall statusFall riskUnsupervised conditionsChair stand test performanceClassification AUCUnsupervised monitoringChair stand testAccelerometer-derived metricsPredicting fall riskStandard Functional AssessmentSupervised performanceBalance confidenceFunctional mobilityWearableNon-fallersStand testBalance deficitsRoutine clinical assessmentSupervision visitsSensorThree-month periodPerformanceFunctional assessmentMultiple sclerosis
2020
Metrics extracted from a single wearable sensor during sit-stand transitions relate to mobility impairment and fall risk in people with multiple sclerosis
Tulipani L, Meyer B, Larie D, Solomon A, McGinnis R. Metrics extracted from a single wearable sensor during sit-stand transitions relate to mobility impairment and fall risk in people with multiple sclerosis. Gait & Posture 2020, 80: 361-366. PMID: 32615409, PMCID: PMC7413823, DOI: 10.1016/j.gaitpost.2020.06.014.Peer-Reviewed Original ResearchConceptsInertial sensorsAccelerometer-based approachFall riskBalance confidenceWearable inertial sensorsStand-to-sit transitionsTriaxial acceleration dataFall statusWearable sensorsAccelerometer-based metricsMeasures of disease severityAccelerometer featuresSelf-report outcome measuresChair stand testWearable accelerometersAccelerometer-derived metricsSit-to-standSit-stand transitionsAccuracy of functional assessmentsChallenging taskMetricsSensorClinical metricsAcceleration dataLogistic regression models