2020
Body Mass Index and Age Effects on Brain 11β-Hydroxysteroid Dehydrogenase Type 1: a Positron Emission Tomography Study
Bini J, Bhatt S, Hillmer AT, Gallezot JD, Nabulsi N, Pracitto R, Labaree D, Kapinos M, Ropchan J, Matuskey D, Sherwin RS, Jastreboff AM, Carson RE, Cosgrove K, Huang Y. Body Mass Index and Age Effects on Brain 11β-Hydroxysteroid Dehydrogenase Type 1: a Positron Emission Tomography Study. Molecular Imaging And Biology 2020, 22: 1124-1131. PMID: 32133575, PMCID: PMC7351613, DOI: 10.1007/s11307-020-01490-z.Peer-Reviewed Original ResearchConceptsBody mass indexPositron emission tomographyDehydrogenase type 1Mass indexObese individualsEnzyme 11β-hydroxysteroid dehydrogenase type 1Whole brainType 1Higher body mass indexPositron emission tomography studyVT valuesSevere Alzheimer's diseaseEmission tomography studiesSteroid stress hormonesAge-associated increaseMean whole brainSignificant age-associated increaseRegional distribution volumesVisceral adiposityInsulin resistanceActive cortisolExcess cortisolInactive cortisoneMemory dysfunctionParietal lobe
2019
PET Imaging of Pancreatic Dopamine D2 and D3 Receptor Density with 11C-(+)-PHNO in Type 1 Diabetes
Bini J, Sanchez-Rangel E, Gallezot JD, Naganawa M, Nabulsi N, Lim K, Najafzadeh S, Shirali A, Ropchan J, Matuskey D, Huang Y, Herold K, Harris PE, Sherwin RS, Carson RE, Cline GW. PET Imaging of Pancreatic Dopamine D2 and D3 Receptor Density with 11C-(+)-PHNO in Type 1 Diabetes. Journal Of Nuclear Medicine 2019, 61: 570-576. PMID: 31601695, PMCID: PMC7198375, DOI: 10.2967/jnumed.119.234013.Peer-Reviewed Original ResearchConceptsT1DM individualsHealthy controlsDopamine DOutcome measuresAcute C-peptide responseSUVR-1Type 1 diabetes mellitusPET/CT scanningDuration of diabetesMaximal glycemic potentiationC-peptide responseClinical outcome measuresInsulin secretory capacityRoutine clinical measuresD3 receptor densityΒ-cell functionC-peptide releaseQuantitative PET measuresΒ-cell massDynamic PET scansQuantitative outcome measuresAgonist PET radioligandDiabetes mellitusReceptor agonistInsulin antibodiesIn Vivo Synaptic Density Imaging with 11C-UCB-J Detects Treatment Effects of Saracatinib in a Mouse Model of Alzheimer Disease
Toyonaga T, Smith LM, Finnema SJ, Gallezot JD, Naganawa M, Bini J, Mulnix T, Cai Z, Ropchan J, Huang Y, Strittmatter SM, Carson RE. In Vivo Synaptic Density Imaging with 11C-UCB-J Detects Treatment Effects of Saracatinib in a Mouse Model of Alzheimer Disease. Journal Of Nuclear Medicine 2019, 60: 1780-1786. PMID: 31101744, PMCID: PMC6894376, DOI: 10.2967/jnumed.118.223867.Peer-Reviewed Original ResearchConceptsAPP/PS1 micePS1 miceAlzheimer's diseaseWT miceSynaptic densityC-UCBDrug washoutTreatment effectsPresenilin 1 (PS1) double transgenic miceHippocampal synaptic densityAPP/PS1Double transgenic miceEnd of treatmentWild-type miceAmyloid precursor proteinEarly Alzheimer's diseaseSignificant differencesSUVR-1New PET tracersMild cognitive impairmentAD miceSynaptic deficitsOral gavageAD treatmentHealthy subjectsMultimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall
Lobatto ME, Binderup T, Robson PM, Giesen LFP, Calcagno C, Witjes J, Fay F, Baxter S, Wessel CH, Eldib M, Bini J, Carlin SD, Stroes ESG, Storm G, Kjaer A, Lewis JS, Reiner T, Fayad ZA, Mulder WJM, Pérez-Medina C. Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall. Bioconjugate Chemistry 2019, 31: 360-368. PMID: 31095372, PMCID: PMC7460274, DOI: 10.1021/acs.bioconjchem.9b00256.Peer-Reviewed Original ResearchConceptsAtherosclerotic vessel wallPositron emission tomographyVascular permeabilityVessel wallEmission tomographyRabbit atherosclerosis modelExperimental treatment optionsPET/magnetic resonance imagingDynamic contrast-enhanced MRIMultimodal positron emission tomographyContrast-enhanced MRIMagnetic resonance imagingDevelopment of nanotherapyNoninvasive imaging approachPET/MRIAtherosclerotic diseaseAtherosclerosis modelTreatment optionsAbdominal aortaIntravenous injectionAtherosclerotic lesionsResonance imagingPET/Treatment evaluationBiodistribution patternFirst in-human PET study and kinetic evaluation of [18F]AS2471907 for imaging 11β-hydroxysteroid dehydrogenase type 1
Bhatt S, Nabulsi NB, Li S, Cai Z, Matuskey D, Bini J, Najafzadeh S, Kapinos M, Ropchan JR, Carson RE, Cosgrove KP, Huang Y, Hillmer AT. First in-human PET study and kinetic evaluation of [18F]AS2471907 for imaging 11β-hydroxysteroid dehydrogenase type 1. Cerebrovascular And Brain Metabolism Reviews 2019, 40: 695-704. PMID: 30895878, PMCID: PMC7168798, DOI: 10.1177/0271678x19838633.Peer-Reviewed Original Research
2018
Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging
Cline GW, Naganawa M, Chen L, Chidsey K, Carvajal-Gonzalez S, Pawlak S, Rossulek M, Zhang Y, Bini J, McCarthy TJ, Carson RE, Calle RA. Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging. Diabetologia 2018, 61: 2598-2607. PMID: 29721633, DOI: 10.1007/s00125-018-4624-0.Peer-Reviewed Original ResearchConceptsVesicular monoamine transporter type 2Type 2 diabetesBeta-cell massHealthy obese volunteersStandardised uptake value ratioBeta-cell functionTest-retest variabilityPancreas headTracer uptakeSUVR-1Type 2 diabetes mellitusType 2 diabetic participantsBeta-cell capacityConclusions/interpretationTheC-peptide AUCImpaired glucose toleranceType 2 diabetes pathophysiologyCell functionDeficient insulin secretionAcute insulin responsePancreas of humansUptake value ratioC-peptide releasePancreatic polypeptide cellsTransporter type 2Evaluation of PET Brain Radioligands for Imaging Pancreatic β-Cell Mass: Potential Utility of 11C-(+)-PHNO
Bini J, Naganawa M, Nabulsi N, Huang Y, Ropchan J, Lim K, Najafzadeh S, Herold KC, Cline GW, Carson RE. Evaluation of PET Brain Radioligands for Imaging Pancreatic β-Cell Mass: Potential Utility of 11C-(+)-PHNO. Journal Of Nuclear Medicine 2018, 59: 1249-1254. PMID: 29371405, PMCID: PMC6071501, DOI: 10.2967/jnumed.117.197285.Peer-Reviewed Original ResearchConceptsT1DM subjectsΒ-cell massHealthy controlsΒ-cellsAbdominal organsType 1 diabetes mellitusC-peptide levelsHealthy control subjectsPancreatic β-cell massDeficient insulin secretionReceptor agonist radioligandPET/CTIslets of LangerhansDynamic PET/CTCommon cellular receptorPancreatic bindingDiabetes mellitusDiabetic subjectsControl subjectsNeurologic tissueC-peptideInsulin secretionMean SUVAgonist radioligandDiabetes therapy
2016
In Vivo PET Imaging of HDL in Multiple Atherosclerosis Models
Pérez-Medina C, Binderup T, Lobatto ME, Tang J, Calcagno C, Giesen L, Wessel CH, Witjes J, Ishino S, Baxter S, Zhao Y, Ramachandran S, Eldib M, Sánchez-Gaytán BL, Robson PM, Bini J, Granada JF, Fish KM, Stroes ES, Duivenvoorden R, Tsimikas S, Lewis JS, Reiner T, Fuster V, Kjær A, Fisher EA, Fayad ZA, Mulder WJ. In Vivo PET Imaging of HDL in Multiple Atherosclerosis Models. JACC Cardiovascular Imaging 2016, 9: 950-961. PMID: 27236528, PMCID: PMC5589956, DOI: 10.1016/j.jcmg.2016.01.020.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaAortic DiseasesApolipoproteins EAtherosclerosisAutoradiographyDisease Models, AnimalFemaleFlow CytometryLipoproteins, HDLMagnetic Resonance ImagingMaleMice, Inbred C57BLMice, KnockoutMolecular ImagingOptical ImagingPlaque, AtheroscleroticPositron Emission Tomography Computed TomographyPredictive Value of TestsRabbitsRadioisotopesRadiopharmaceuticalsReproducibility of ResultsTissue DistributionZirconiumConceptsHigh-density lipoproteinPositron emission tomographyHDL nanoparticlesPlaque macrophagesPET imagingAtherosclerotic plaque macrophagesRadioactivity uptake valuesIncident cardiovascular eventsCoronary heart diseaseDistinct pharmacokinetic profileStrong independent predictorHDL cholesterol concentrationsReverse cholesterol transportAdvanced atherosclerotic lesionsAccumulation of radioactivityMagnetic resonance imagingVivo PET imagingNoninvasive imaging toolNoninvasive PET imagingCardiovascular eventsIndependent predictorsAtherosclerosis modelHeart diseaseMurine modelAtherosclerotic lesions
2015
Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging
Eldib M, Bini J, Robson PM, Calcagno C, Faul DD, Tsoumpas C, Fayad ZA. Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging. Physics In Medicine And Biology 2015, 60: 4705-4717. PMID: 26020273, PMCID: PMC4495953, DOI: 10.1088/0031-9155/60/12/4705.Peer-Reviewed Original ResearchMeSH KeywordsArtifactsCarotid Artery DiseasesFemaleFluorodeoxyglucose F18HumansImage EnhancementImage Interpretation, Computer-AssistedMagnetic Resonance ImagingMalePatient PositioningPhantoms, ImagingPositron-Emission TomographyRadiopharmaceuticalsSoftwareTissue DistributionTomography, X-Ray Computed
2013
Preclinical Evaluation of MR Attenuation Correction Versus CT Attenuation Correction on a Sequential Whole-Body MR/PET Scanner
Bini J, Izquierdo-Garcia D, Mateo J, Machac J, Narula J, Fuster V, Fayad ZA. Preclinical Evaluation of MR Attenuation Correction Versus CT Attenuation Correction on a Sequential Whole-Body MR/PET Scanner. Investigative Radiology 2013, 48: 313-322. PMID: 23296082, PMCID: PMC3638002, DOI: 10.1097/rli.0b013e31827a49ba.Peer-Reviewed Original ResearchConceptsPET scannerPositron emission tomography (PET) systemsEmpirical attenuation coefficientsEmission tomography systemAttenuation correctionPET attenuation correctionCTAC methodsTomography systemPhoton attenuationAnimal bedAttenuation coefficientProton densityDirect informationMR/PET imagesCT attenuation correctionLarge bone structuresSUV maximumCoregistered CT imagesAttenuation mapPET imagesQuantitative PETCorrectionScannerMagnetic resonanceTomographic images
2009
Merkel Cell Polyomavirus Expression in Merkel Cell Carcinomas and Its Absence in Combined Tumors and Pulmonary Neuroendocrine Carcinomas
Busam KJ, Jungbluth AA, Rekthman N, Coit D, Pulitzer M, Bini J, Arora R, Hanson NC, Tassello JA, Frosina D, Moore P, Chang Y. Merkel Cell Polyomavirus Expression in Merkel Cell Carcinomas and Its Absence in Combined Tumors and Pulmonary Neuroendocrine Carcinomas. The American Journal Of Surgical Pathology 2009, 33: 1378-1385. PMID: 19609205, PMCID: PMC2932664, DOI: 10.1097/pas.0b013e3181aa30a5.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overBiomarkers, TumorCarcinoma, Merkel CellCarcinoma, Squamous CellCell CountDNA, NeoplasmDNA, ViralFemaleFluorescent Antibody Technique, DirectHumansKeratin-20Lung NeoplasmsLymph NodesMaleMiddle AgedPolymerase Chain ReactionPolyomavirusPolyomavirus InfectionsSkin NeoplasmsTissue Array AnalysisTumor Virus InfectionsConceptsMerkel cell carcinomaPulmonary neuroendocrine carcinomasMerkel cell polyomavirusMajority of MCCsNeuroendocrine carcinomaCell carcinomaPolymerase chain reactionDiagnosis of MCCPrimary cutaneous neuroendocrine carcinomaCutaneous neuroendocrine carcinomaSquamous cell carcinomaChain reactionFrozen tumor samplesMCV T antigenQuantitative polymerase chain reactionCytokeratin 20Frozen tissue samplesTissue microarrayCombined tumorCarcinomaNeuroendocrine phenotypeLarge T antigen geneImmunohistochemistryTumor samplesCM2B4