2024
The Importance of PET Imaging to Understanding Whole-Body Cortisol Metabolism in Alzheimer’s Disease
Bini J. The Importance of PET Imaging to Understanding Whole-Body Cortisol Metabolism in Alzheimer’s Disease. Journal Of Alzheimer's Disease 2024, 99: 113-115. PMID: 38607759, DOI: 10.3233/jad-231463.Peer-Reviewed Original ResearchMeSH Keywords11-beta-Hydroxysteroid Dehydrogenase Type 1Alzheimer DiseaseBrainHumansHydrocortisonePositron-Emission Tomography
2023
The historical progression of positron emission tomography research in neuroendocrinology
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Frontiers In Neuroendocrinology 2023, 70: 101081. PMID: 37423505, PMCID: PMC10530506, DOI: 10.1016/j.yfrne.2023.101081.Peer-Reviewed Original ResearchConceptsPositron emission tomographyPositron emission tomography researchEmission Tomography ImagingPositron emission tomography (PET) imagingNumber of radiopharmaceuticalsEndocrine organSystematic reviewEmission tomographyPET radioligandHormone actionTomography imagingPET imagingDifferent receptorsHuman brainPET researchImagingSystem actionsSteroidsCliniciansRadioligandHormoneBrainProgressionReceptors
2022
Noninvasive Quantitative PET Imaging in Humans of the Pancreatic Beta-Cell Mass Biomarkers VMAT2 and Dopamine D2/D3 Receptors In Vivo
Bini J, Carson R, Cline G. Noninvasive Quantitative PET Imaging in Humans of the Pancreatic Beta-Cell Mass Biomarkers VMAT2 and Dopamine D2/D3 Receptors In Vivo. Methods In Molecular Biology 2022, 2592: 61-74. PMID: 36507985, DOI: 10.1007/978-1-0716-2807-2_4.Peer-Reviewed Original ResearchMeSH KeywordsDiabetes Mellitus, Type 2DopamineHumansPositron-Emission TomographyReceptors, Dopamine D2Receptors, Dopamine D3TetrabenazineVesicular Monoamine Transport ProteinsConceptsPositron emission tomographyBeta-cell massFunctional beta-cell massDopamine D2/D3 receptorsD2/D3 receptorsBeta-cell lossType 2 diabetesEfficacy of therapeuticsQuantitative positron emission tomographyInsulin secretionDopamine receptorsD3 receptorsGlucose regulationPET radioligandEmission tomographyType 1Clinical usePET imagingReceptorsQuantitative PET imagingVMAT2Cellular transportersImagingVivoQuantitative imaging
2021
The Role of Positron Emission Tomography in Bariatric Surgery Research: a Review
Bini J, Norcross M, Cheung M, Duffy A. The Role of Positron Emission Tomography in Bariatric Surgery Research: a Review. Obesity Surgery 2021, 31: 4592-4606. PMID: 34304378, DOI: 10.1007/s11695-021-05576-7.Peer-Reviewed Original ResearchConceptsPositron emission tomographyBariatric surgeryEmission tomographyBariatric surgery researchMalabsorption of foodBlood flowWhole-body PET imagingRadioligand developmentWeight lossPET imagingAmount of foodSurgery researchPhysiological effectsSurgeryPicomolar concentrationsTomographyRadioactive moleculesMetabolismMalabsorptionObesityPatientsFoodStomachPharmacologyReceptors
2020
Reply: 11C-(+)-PHNO Trapping Reversibility for Quantitative PET Imaging of β-Cell Mass in Patients with Type 1 Diabetes
Bini J, Carson RE, Cline GW. Reply: 11C-(+)-PHNO Trapping Reversibility for Quantitative PET Imaging of β-Cell Mass in Patients with Type 1 Diabetes. Journal Of Nuclear Medicine 2020, 61: 1693-1693. PMID: 32620703, DOI: 10.2967/jnumed.120.250985.Peer-Reviewed Original ResearchMeSH KeywordsCarbon RadioisotopesDiabetes Mellitus, Type 1DopamineHumansPositron-Emission TomographyReceptors, Dopamine D3Body Mass Index and Age Effects on Brain 11β-Hydroxysteroid Dehydrogenase Type 1: a Positron Emission Tomography Study
Bini J, Bhatt S, Hillmer AT, Gallezot JD, Nabulsi N, Pracitto R, Labaree D, Kapinos M, Ropchan J, Matuskey D, Sherwin RS, Jastreboff AM, Carson RE, Cosgrove K, Huang Y. Body Mass Index and Age Effects on Brain 11β-Hydroxysteroid Dehydrogenase Type 1: a Positron Emission Tomography Study. Molecular Imaging And Biology 2020, 22: 1124-1131. PMID: 32133575, PMCID: PMC7351613, DOI: 10.1007/s11307-020-01490-z.Peer-Reviewed Original ResearchMeSH Keywords11-beta-Hydroxysteroid Dehydrogenase Type 1AdultAge FactorsAgingBody Mass IndexBrainFemaleHumansMaleOrgan SpecificityPositron-Emission TomographyConceptsBody mass indexPositron emission tomographyDehydrogenase type 1Mass indexObese individualsEnzyme 11β-hydroxysteroid dehydrogenase type 1Whole brainType 1Higher body mass indexPositron emission tomography studyVT valuesSevere Alzheimer's diseaseEmission tomography studiesSteroid stress hormonesAge-associated increaseMean whole brainSignificant age-associated increaseRegional distribution volumesVisceral adiposityInsulin resistanceActive cortisolExcess cortisolInactive cortisoneMemory dysfunctionParietal lobe
2019
PET Imaging of Pancreatic Dopamine D2 and D3 Receptor Density with 11C-(+)-PHNO in Type 1 Diabetes
Bini J, Sanchez-Rangel E, Gallezot JD, Naganawa M, Nabulsi N, Lim K, Najafzadeh S, Shirali A, Ropchan J, Matuskey D, Huang Y, Herold K, Harris PE, Sherwin RS, Carson RE, Cline GW. PET Imaging of Pancreatic Dopamine D2 and D3 Receptor Density with 11C-(+)-PHNO in Type 1 Diabetes. Journal Of Nuclear Medicine 2019, 61: 570-576. PMID: 31601695, PMCID: PMC7198375, DOI: 10.2967/jnumed.119.234013.Peer-Reviewed Original ResearchMeSH KeywordsAdultDiabetes Mellitus, Type 1FemaleHumansLigandsMaleMiddle AgedOxazinesPancreasPositron-Emission TomographyReceptors, Dopamine D2Receptors, Dopamine D3Young AdultConceptsT1DM individualsHealthy controlsDopamine DOutcome measuresAcute C-peptide responseSUVR-1Type 1 diabetes mellitusPET/CT scanningDuration of diabetesMaximal glycemic potentiationC-peptide responseClinical outcome measuresInsulin secretory capacityRoutine clinical measuresD3 receptor densityΒ-cell functionC-peptide releaseQuantitative PET measuresΒ-cell massDynamic PET scansQuantitative outcome measuresAgonist PET radioligandDiabetes mellitusReceptor agonistInsulin antibodiesIn Vivo Synaptic Density Imaging with 11C-UCB-J Detects Treatment Effects of Saracatinib in a Mouse Model of Alzheimer Disease
Toyonaga T, Smith LM, Finnema SJ, Gallezot JD, Naganawa M, Bini J, Mulnix T, Cai Z, Ropchan J, Huang Y, Strittmatter SM, Carson RE. In Vivo Synaptic Density Imaging with 11C-UCB-J Detects Treatment Effects of Saracatinib in a Mouse Model of Alzheimer Disease. Journal Of Nuclear Medicine 2019, 60: 1780-1786. PMID: 31101744, PMCID: PMC6894376, DOI: 10.2967/jnumed.118.223867.Peer-Reviewed Original ResearchMeSH KeywordsAlzheimer DiseaseAnimalsBenzodioxolesDisease Models, AnimalFemaleKineticsMaleMicePositron-Emission TomographyPyridinesPyrrolidinesPyrrolidinonesQuinazolinesSynapsesConceptsAPP/PS1 micePS1 miceAlzheimer's diseaseWT miceSynaptic densityC-UCBDrug washoutTreatment effectsPresenilin 1 (PS1) double transgenic miceHippocampal synaptic densityAPP/PS1Double transgenic miceEnd of treatmentWild-type miceAmyloid precursor proteinEarly Alzheimer's diseaseSignificant differencesSUVR-1New PET tracersMild cognitive impairmentAD miceSynaptic deficitsOral gavageAD treatmentHealthy subjectsMultimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall
Lobatto ME, Binderup T, Robson PM, Giesen LFP, Calcagno C, Witjes J, Fay F, Baxter S, Wessel CH, Eldib M, Bini J, Carlin SD, Stroes ESG, Storm G, Kjaer A, Lewis JS, Reiner T, Fayad ZA, Mulder WJM, Pérez-Medina C. Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall. Bioconjugate Chemistry 2019, 31: 360-368. PMID: 31095372, PMCID: PMC7460274, DOI: 10.1021/acs.bioconjchem.9b00256.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAorta, AbdominalAtherosclerosisLiposomesMalePlaque, AtheroscleroticPositron-Emission TomographyRabbitsRadioisotopesTissue DistributionZirconiumConceptsAtherosclerotic vessel wallPositron emission tomographyVascular permeabilityVessel wallEmission tomographyRabbit atherosclerosis modelExperimental treatment optionsPET/magnetic resonance imagingDynamic contrast-enhanced MRIMultimodal positron emission tomographyContrast-enhanced MRIMagnetic resonance imagingDevelopment of nanotherapyNoninvasive imaging approachPET/MRIAtherosclerotic diseaseAtherosclerosis modelTreatment optionsAbdominal aortaIntravenous injectionAtherosclerotic lesionsResonance imagingPET/Treatment evaluationBiodistribution patternFirst in-human PET study and kinetic evaluation of [18F]AS2471907 for imaging 11β-hydroxysteroid dehydrogenase type 1
Bhatt S, Nabulsi NB, Li S, Cai Z, Matuskey D, Bini J, Najafzadeh S, Kapinos M, Ropchan JR, Carson RE, Cosgrove KP, Huang Y, Hillmer AT. First in-human PET study and kinetic evaluation of [18F]AS2471907 for imaging 11β-hydroxysteroid dehydrogenase type 1. Cerebrovascular And Brain Metabolism Reviews 2019, 40: 695-704. PMID: 30895878, PMCID: PMC7168798, DOI: 10.1177/0271678x19838633.Peer-Reviewed Original Research
2018
Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging
Cline GW, Naganawa M, Chen L, Chidsey K, Carvajal-Gonzalez S, Pawlak S, Rossulek M, Zhang Y, Bini J, McCarthy TJ, Carson RE, Calle RA. Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging. Diabetologia 2018, 61: 2598-2607. PMID: 29721633, DOI: 10.1007/s00125-018-4624-0.Peer-Reviewed Original ResearchMeSH KeywordsDiabetes Mellitus, Type 2FemaleHumansInsulin-Secreting CellsMagnetic Resonance ImagingMaleMiddle AgedPancreasPositron-Emission TomographyVesicular Monoamine Transport ProteinsConceptsVesicular monoamine transporter type 2Type 2 diabetesBeta-cell massHealthy obese volunteersStandardised uptake value ratioBeta-cell functionTest-retest variabilityPancreas headTracer uptakeSUVR-1Type 2 diabetes mellitusType 2 diabetic participantsBeta-cell capacityConclusions/interpretationTheC-peptide AUCImpaired glucose toleranceType 2 diabetes pathophysiologyCell functionDeficient insulin secretionAcute insulin responsePancreas of humansUptake value ratioC-peptide releasePancreatic polypeptide cellsTransporter type 2
2015
Attenuation Correction for Magnetic Resonance Coils in Combined PET/MR Imaging A Review
Eldib M, Bini J, Faul DD, Oesingmann N, Tsoumpas C, Fayad ZA. Attenuation Correction for Magnetic Resonance Coils in Combined PET/MR Imaging A Review. PET Clinics 2015, 11: 151-160. PMID: 26952728, PMCID: PMC4785842, DOI: 10.1016/j.cpet.2015.10.004.Peer-Reviewed Original ResearchMarkerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging
Eldib M, Bini J, Robson PM, Calcagno C, Faul DD, Tsoumpas C, Fayad ZA. Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging. Physics In Medicine And Biology 2015, 60: 4705-4717. PMID: 26020273, PMCID: PMC4495953, DOI: 10.1088/0031-9155/60/12/4705.Peer-Reviewed Original ResearchMeSH KeywordsArtifactsCarotid Artery DiseasesFemaleFluorodeoxyglucose F18HumansImage EnhancementImage Interpretation, Computer-AssistedMagnetic Resonance ImagingMalePatient PositioningPhantoms, ImagingPositron-Emission TomographyRadiopharmaceuticalsSoftwareTissue DistributionTomography, X-Ray ComputedSimultaneous carotid PET/MR: feasibility and improvement of magnetic resonance-based attenuation correction
Bini J, Eldib M, Robson PM, Calcagno C, Fayad ZA. Simultaneous carotid PET/MR: feasibility and improvement of magnetic resonance-based attenuation correction. The International Journal Of Cardiovascular Imaging 2015, 32: 61-71. PMID: 25898892, PMCID: PMC4618272, DOI: 10.1007/s10554-015-0661-7.Peer-Reviewed Original Research
2014
Attenuation Correction for Flexible Magnetic Resonance Coils in Combined Magnetic Resonance/Positron Emission Tomography Imaging
Eldib M, Bini J, Calcagno C, Robson PM, Mani V, Fayad ZA. Attenuation Correction for Flexible Magnetic Resonance Coils in Combined Magnetic Resonance/Positron Emission Tomography Imaging. Investigative Radiology 2014, 49: 63-69. PMID: 24056110, PMCID: PMC4011564, DOI: 10.1097/rli.0b013e3182a530f8.Peer-Reviewed Original ResearchConceptsMagnetic resonance coilVolume splineResonance coilsMR coilPhantom experimentsSuch coilsUniform cylindrical water phantomMR/PET systemAttenuation propertiesCoilLocal overestimationAttenuation mapFlexible coilCylindrical water phantomPhantom findingsLocal underestimationRegistration methodAccurate measurementField of viewCT-based attenuation mapPhantom scansWater phantomAttenuation correctionSurfaceNovel methodImprovement of Attenuation Correction in Time-of-Flight PET/MR Imaging with a Positron-Emitting Source
Mollet P, Keereman V, Bini J, Izquierdo-Garcia D, Fayad ZA, Vandenberghe S. Improvement of Attenuation Correction in Time-of-Flight PET/MR Imaging with a Positron-Emitting Source. Journal Of Nuclear Medicine 2014, 55: 329-336. PMID: 24434291, PMCID: PMC4010111, DOI: 10.2967/jnumed.113.125989.Peer-Reviewed Original Research
2013
Preclinical Evaluation of MR Attenuation Correction Versus CT Attenuation Correction on a Sequential Whole-Body MR/PET Scanner
Bini J, Izquierdo-Garcia D, Mateo J, Machac J, Narula J, Fuster V, Fayad ZA. Preclinical Evaluation of MR Attenuation Correction Versus CT Attenuation Correction on a Sequential Whole-Body MR/PET Scanner. Investigative Radiology 2013, 48: 313-322. PMID: 23296082, PMCID: PMC3638002, DOI: 10.1097/rli.0b013e31827a49ba.Peer-Reviewed Original ResearchConceptsPET scannerPositron emission tomography (PET) systemsEmpirical attenuation coefficientsEmission tomography systemAttenuation correctionPET attenuation correctionCTAC methodsTomography systemPhoton attenuationAnimal bedAttenuation coefficientProton densityDirect informationMR/PET imagesCT attenuation correctionLarge bone structuresSUV maximumCoregistered CT imagesAttenuation mapPET imagesQuantitative PETCorrectionScannerMagnetic resonanceTomographic imagesMonitoring plaque inflammation in atherosclerotic rabbits with an iron oxide (P904) and 18F-FDG using a combined PET/MR scanner
Millon A, Dickson S, Klink A, Izquierdo-Garcia D, Bini J, Lancelot E, Ballet S, Robert P, de Castro J, Corot C, Fayad Z. Monitoring plaque inflammation in atherosclerotic rabbits with an iron oxide (P904) and 18F-FDG using a combined PET/MR scanner. Atherosclerosis 2013, 228: 339-345. PMID: 23582588, PMCID: PMC4128694, DOI: 10.1016/j.atherosclerosis.2013.03.019.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAorta, AbdominalAortic DiseasesAtherosclerosisAtorvastatinContrast MediaDextransDisease Models, AnimalDisease ProgressionFluorodeoxyglucose F18Heptanoic AcidsHydroxymethylglutaryl-CoA Reductase InhibitorsInflammationMagnetic Resonance ImagingMagnetite NanoparticlesPlaque, AtheroscleroticPositron-Emission TomographyPredictive Value of TestsPyrrolesRabbitsRadiographyRadiopharmaceuticalsTime FactorsConceptsFDG-PETPlaque inflammationRegression groupAbdominal aortaAtherosclerotic rabbitsAortic wallMean standard uptake valueStrong FDG uptakeStandard uptake valueContrast-enhanced MRIFDG-PET dataFunctional imaging modalitiesProgression groupBaseline imagingFDG uptakeMR scannerSUVmean valuesUSPIO uptakeAtherosclerotic plaquesMacrophage densityUptake valueEarly changesInflammationRabbit modelDietary changes