2025
Incorporating local ancestry information to predict genetically associated DNA methylation in admixed populations
Cheng Y, Zhou G, Li H, Zhang X, Justice A, Martinez C, Aouizerat B, Xu K, Zhao H. Incorporating local ancestry information to predict genetically associated DNA methylation in admixed populations. Briefings In Bioinformatics 2025, 26: bbaf325. PMID: 40622482, PMCID: PMC12232425, DOI: 10.1093/bib/bbaf325.Peer-Reviewed Original ResearchConceptsMethylome-wide association studiesAdmixed populationsComplex traitsLocal ancestryAssociation studiesDNA methylationAssociated with complex traitsLocal ancestry informationPopulations of European ancestryCpG methylation levelsNon-European populationsMeasurement of methylationAncestry informationCpG sitesMethylation levelsEuropean ancestryEpigenetic underpinningsCpGAncestryTraitsMethylationAmerican populationAfrican American populationDNAPopulationRobust pleiotropy-decomposed polygenic scores identify distinct contributions to elevated coronary artery disease polygenic risk
Hu J, Ye Y, Zhang C, Ruan Y, Natarajan P, Zhao H. Robust pleiotropy-decomposed polygenic scores identify distinct contributions to elevated coronary artery disease polygenic risk. PLOS Computational Biology 2025, 21: e1013191. PMID: 40570042, PMCID: PMC12212871, DOI: 10.1371/journal.pcbi.1013191.Peer-Reviewed Original ResearchConceptsPolygenic risk scoresCAD-PRSUK BiobankCoronary artery disease polygenic risk scoreSummary-level dataCAD-related traitsSamples of European ancestryCoronary artery diseaseHigh-risk individualsPotential genetic heterogeneityCurrent smokingPolygenic scoresPolygenic riskTargeted interventionsEuropean ancestryRisk scorePleiotropic regionsRisk predictionGenetic heterogeneityBiological functionsPleiotropySignificant interactionPhenotypic heterogeneityBlood pressureDisease interpretationPerformance of Polygenic Risk Scores for Primary Open-Angle Glaucoma in Populations of African Descent
Chang-Wolf J, Kinzy T, Driessen S, Cruz L, Iyengar S, Peachey N, Aung T, Khor C, Williams S, Ramsay M, Olawoye O, Ashaye A, Klaver C, Hauser M, Thiadens A, Cooke Bailey J, Bonnemaijer P, Sanywia A, Cook C, Hassan H, Kanyaro N, Ntomoka C, Allingham R, van der Heide C, Taylor K, Rotter J, Wang S, ABDULLAHI S, Abu-Amero K, Anderson M, Akafo S, ALHASSAN M, Asimadu I, Ayyagari R, BAKAYOKO S, BIANGOUP NYAMSI P, Bowden D, Bromley W, Budenz D, Carmichael T, Challa P, Chen Y, Chuka-Okosa C, Costa V, Cruz D, DuBiner H, Ervin J, Feldman R, Flamme-Wiese M, Gaasterland D, Garnai S, Girkin C, GUIROU N, Guo X, Haines J, Hammond C, Herndon L, Hoffmann T, Hulette C, Hydara A, Igo Jr. R, Jorgenson E, KABWE J, KILANGALANGA N, Kizor-Akaraiwe N, Kuchtey R, LAMARI H, Li Z, Liebmann J, Liu Y, Loos R, Melo M, Moroi S, Msosa J, Mullins R, Nadkarni G, NAPO A, Ng M, Nunes H, Obeng-Nyarkoh E, Okeke A, Okeke S, OLANIYI O, Oliveira M, Pasquale L, Perez-Grossmann R, Pericak-Vance M, Qin X, RESNIKOFF S, Richards J, Schimiti R, Sim K, Sponsel W, Svidnicki P, Uche N, van Duijn C, Vasconcellos J, Wiggs J, Zangwill L, Risch N, Milea D, Weinreb R, Ashley-Koch A, Fingert J, Aslan M, Antonelli M, de Asis M, Bauer M, Brophy M, Concato J, Cunningham F, Freedman R, Gaziano M, Gleason T, Harvey P, Huang G, Kelsoe J, Kosten T, Lehner T, Lohr J, Marder S, Miller P, O Leary T, Patterson T, Peduzzi P, Przygodski R, Siever L, Sklar P, Strakowski S, Zhao H, Fanous A, Farwell W, Malhorta A, Mane S, Palacios P, Bigdeli T, Corsey M, Zaluda L, Johnson J, Sueiro M, Cavaliere D, Jeanpaul V, Maffucci A, Mancini L, Deen J, Muldoon G, Whitbourne S, Canive J, Adamson L, Calais L, Fuldauer G, Kushner R, Toney G, Lackey M, Mank A, Mahdavi N, Villarreal G, Muly E, Amin F, Dent M, Wold J, Fischer B, Elliott A, Felix C, Gill G, Parker P, Logan C, McAlpine J, DeLisi L, Reece S, Hammer M, Agbor‐Tabie D, Goodson W, Aslam M, Grainger M, Richtand N, Rybalsky A, Al Jurdi R, Boeckman E, Natividad T, Smith D, Stewart M, Torres S, Zhao Z, Mayeda A, Green A, Hofstetter J, Ngombu S, Scott M, Strasburger A, Sumner J, Paschall G, Mucciarelli J, Owen R, Theus S, Tompkins D, Potkin S, Reist C, Novin M, Khalaghizadeh S, Douyon R, Kumar N, Martinez B, Sponheim S, Bender T, Lucas H, Lyon A, Marggraf M, Sorensen L, Surerus C, Sison C, Amato J, Johnson D, Pagan‐Howard N, Adler L, Alerpin S, Leon T, Mattocks K, Araeva N, Sullivan J, Suppes T, Bratcher K, Drag L, Fischer E, Fujitani L, Gill S, Grimm D, Hoblyn J, Nguyen T, Nikolaev E, Shere L, Relova R, Vicencio A, Yip M, Hurford I, Acheampong S, Carfagno G, Haas G, Appelt C, Brown E, Chakraborty B, Kelly E, Klima G, Steinhauer S, Hurley R, Belle R, Eknoyan D, Johnson K, Lamotte J, Granholm E, Bradshaw K, Holden J, Jones R, Le T, Molina I, Peyton M, Ruiz I, Sally L, Tapp A, Devroy S, Jain V, Kilzieh N, Maus L, Miller K, Pope H, Wood A, Meyer E, Givens P, Hicks P, Justice S, McNair K, Pena J, Tharp D, Davis L, Ban M, Cheatum L, Darr P, Grayson W, Munford J, Whitfield B, Wilson E, Melnikoff S, Schwartz B, Tureson M, D Souza D, Forselius K, Ranganathan M, Rispoli L, Sather M, Colling C, Haakenson C, Kruegar D, Muralidhar S, Ramoni R, Breeling J, Chang K, O Donnell C, Tsao P, Moser J, Brewer J, Warren S, Argyres D, Stevens B, Humphries D, Do N, Shayan S, Nguyen X, Pyarajan S, Cho K, Hauser E, Sun Y, Wilson P, McArdle R, Dellitalia L, Harley J, Whittle J. Performance of Polygenic Risk Scores for Primary Open-Angle Glaucoma in Populations of African Descent. JAMA Ophthalmology 2025, 143: 7-14. PMID: 39541127, PMCID: PMC11565374, DOI: 10.1001/jamaophthalmol.2024.4784.Peer-Reviewed Original ResearchConceptsPrimary open-angle glaucomaEuropean ancestry groupsArea under the receiver operating characteristic curveAfrican descentSouth AfricaOpen-angle glaucomaCross-sectional studyIndividuals of African descentBaseline of ageAfrican ancestryOdds ratioGlaucoma patientsRisk stratificationMillion Veteran ProgramPolygenic risk scoresGenetics of glaucomaRisk scorePatients of African descentEuropean ancestryRisk quintileReceiver operating characteristic curveGhanaiansGhanaPopulations of African descentAmerican individuals
2024
LDER-GE estimates phenotypic variance component of gene–environment interactions in human complex traits accurately with GE interaction summary statistics and full LD information
Dong Z, Jiang W, Li H, DeWan A, Zhao H. LDER-GE estimates phenotypic variance component of gene–environment interactions in human complex traits accurately with GE interaction summary statistics and full LD information. Briefings In Bioinformatics 2024, 25: bbae335. PMID: 38980374, PMCID: PMC11232466, DOI: 10.1093/bib/bbae335.Peer-Reviewed Original ResearchConceptsHuman complex traitsComplex traitsGene-environment interactionsGene-environmentLinkage disequilibriumPhenotypic variance componentsPhenotypic varianceProportion of phenotypic varianceSummary statisticsEuropean ancestry subjectsUK Biobank dataAssociation summary statisticsComplete linkage disequilibriumControlled type I error ratesLD informationLD matrixVariance componentsBiobank dataType I error rateEuropean ancestrySample size increaseGenetic effectsTraitsE-I pairsSimulation studyGenome-wide association analyses identify 95 risk loci and provide insights into the neurobiology of post-traumatic stress disorder
Nievergelt C, Maihofer A, Atkinson E, Chen C, Choi K, Coleman J, Daskalakis N, Duncan L, Polimanti R, Aaronson C, Amstadter A, Andersen S, Andreassen O, Arbisi P, Ashley-Koch A, Austin S, Avdibegoviç E, Babić D, Bacanu S, Baker D, Batzler A, Beckham J, Belangero S, Benjet C, Bergner C, Bierer L, Biernacka J, Bierut L, Bisson J, Boks M, Bolger E, Brandolino A, Breen G, Bressan R, Bryant R, Bustamante A, Bybjerg-Grauholm J, Bækvad-Hansen M, Børglum A, Børte S, Cahn L, Calabrese J, Caldas-de-Almeida J, Chatzinakos C, Cheema S, Clouston S, Colodro-Conde L, Coombes B, Cruz-Fuentes C, Dale A, Dalvie S, Davis L, Deckert J, Delahanty D, Dennis M, Desarnaud F, DiPietro C, Disner S, Docherty A, Domschke K, Dyb G, Kulenović A, Edenberg H, Evans A, Fabbri C, Fani N, Farrer L, Feder A, Feeny N, Flory J, Forbes D, Franz C, Galea S, Garrett M, Gelaye B, Gelernter J, Geuze E, Gillespie C, Goleva S, Gordon S, Goçi A, Grasser L, Guindalini C, Haas M, Hagenaars S, Hauser M, Heath A, Hemmings S, Hesselbrock V, Hickie I, Hogan K, Hougaard D, Huang H, Huckins L, Hveem K, Jakovljević M, Javanbakht A, Jenkins G, Johnson J, Jones I, Jovanovic T, Karstoft K, Kaufman M, Kennedy J, Kessler R, Khan A, Kimbrel N, King A, Koen N, Kotov R, Kranzler H, Krebs K, Kremen W, Kuan P, Lawford B, Lebois L, Lehto K, Levey D, Lewis C, Liberzon I, Linnstaedt S, Logue M, Lori A, Lu Y, Luft B, Lupton M, Luykx J, Makotkine I, Maples-Keller J, Marchese S, Marmar C, Martin N, Martínez-Levy G, McAloney K, McFarlane A, McLaughlin K, McLean S, Medland S, Mehta D, Meyers J, Michopoulos V, Mikita E, Milani L, Milberg W, Miller M, Morey R, Morris C, Mors O, Mortensen P, Mufford M, Nelson E, Nordentoft M, Norman S, Nugent N, O’Donnell M, Orcutt H, Pan P, Panizzon M, Pathak G, Peters E, Peterson A, Peverill M, Pietrzak R, Polusny M, Porjesz B, Powers A, Qin X, Ratanatharathorn A, Risbrough V, Roberts A, Rothbaum A, Rothbaum B, Roy-Byrne P, Ruggiero K, Rung A, Runz H, Rutten B, de Viteri S, Salum G, Sampson L, Sanchez S, Santoro M, Seah C, Seedat S, Seng J, Shabalin A, Sheerin C, Silove D, Smith A, Smoller J, Sponheim S, Stein D, Stensland S, Stevens J, Sumner J, Teicher M, Thompson W, Tiwari A, Trapido E, Uddin M, Ursano R, Valdimarsdóttir U, Van Hooff M, Vermetten E, Vinkers C, Voisey J, Wang Y, Wang Z, Waszczuk M, Weber H, Wendt F, Werge T, Williams M, Williamson D, Winsvold B, Winternitz S, Wolf C, Wolf E, Xia Y, Xiong Y, Yehuda R, Young K, Young R, Zai C, Zai G, Zervas M, Zhao H, Zoellner L, Zwart J, deRoon-Cassini T, van Rooij S, van den Heuvel L, Stein M, Ressler K, Koenen K. Genome-wide association analyses identify 95 risk loci and provide insights into the neurobiology of post-traumatic stress disorder. Nature Genetics 2024, 56: 792-808. PMID: 38637617, PMCID: PMC11396662, DOI: 10.1038/s41588-024-01707-9.Peer-Reviewed Original ResearchConceptsMeta-analysis of genome-wide association studiesGenome-wide significant lociMulti-ancestry meta-analysisGenome-wide association analysisGenome-wide association studiesIndividuals of European ancestryPotential causal genesNative American ancestryMulti-omics approachPost-traumatic stress disorderAdmixed individualsSignificant lociRisk lociCausal genesAssociation studiesAssociation analysisFunctional genesTranscription factorsGenetic studiesAmerican ancestryEuropean ancestryAxon guidanceSynaptic structureLociGenes
2023
Shared genetic architecture of blood eosinophil counts and asthma in UK Biobank
Li B, Wang Y, Wang Z, Li X, Kay S, Chupp G, Zhao H, Gomez J. Shared genetic architecture of blood eosinophil counts and asthma in UK Biobank. ERJ Open Research 2023, 9: 00291-2023. PMID: 37650091, PMCID: PMC10463033, DOI: 10.1183/23120541.00291-2023.Peer-Reviewed Original ResearchGenome-wide association studiesGenetic architectureGenetic correlation analysisUK BiobankGWAS resultsTranscription factorsInterleukin-4 SignalingBlood eosinophil countsAssociation studiesDoctor-diagnosed asthmaSignificant variantsEosinophil countEuropean ancestryTraitsPathwayGenetic linkType 2 immune responsesType 2 inflammationSignalingCritical associationImmune responseHeterogeneous diseaseTAGCSevere asthmaTherapeutic interventions
2022
Glaucoma Genetic Risk Scores in the Million Veteran Program
Waksmunski A, Kinzy T, Cruz L, Nealon C, Halladay C, Simpson P, Canania R, Anthony S, Roncone D, Rogers L, Leber J, Dougherty J, Greenberg P, Sullivan J, Wu W, Iyengar S, Crawford D, Peachey N, Bailey J, Gaziano J, Ramoni R, Breeling J, Chang K, Huang G, Muralidhar S, O’Donnell C, Tsao P, Muralidhar S, Moser J, Whitbourne S, Brewer J, Concato J, Warren S, Argyres D, Tsao P, Stephens B, Brophy M, Humphries D, Do N, Shayan S, Nguyen X, O’Donnell C, Pyarajan S, Cho K, Pyarajan S, Hauser E, Sun Y, Zhao H, Wilson P, McArdle R, Dellitalia L, Harley J, Whittle J, Beckham J, Wells J, Gutierrez S, Gibson G, Kaminsky L, Villareal G, Kinlay S, Xu J, Hamner M, Haddock K, Bhushan S, Iruvanti P, Godschalk M, Ballas Z, Buford M, Mastorides S, Klein J, Ratcliffe N, Florez H, Swann A, Murdoch M, Sriram P, Yeh S, Washburn R, Jhala D, Aguayo S, Cohen D, Sharma S, Callaghan J, Oursler K, Whooley M, Ahuja S, Gutierrez A, Schifman R, Greco J, Rauchman M, Servatius R, Oehlert M, Wallbom A, Fernando R, Morgan T, Stapley T, Sherman S, Anderson G, Tsao P, Sonel E, Boyko E, Meyer L, Gupta S, Fayad J, Hung A, Lichy J, Hurley R, Robey B, Striker R. Glaucoma Genetic Risk Scores in the Million Veteran Program. Ophthalmology 2022, 129: 1263-1274. PMID: 35718050, PMCID: PMC9997524, DOI: 10.1016/j.ophtha.2022.06.012.Peer-Reviewed Original ResearchConceptsPrimary open-angle glaucomaInvasive glaucoma surgeryRisk stratificationMillion Veteran ProgramEffect estimatesPOAG casesEuropean ancestryOpen-angle glaucomaCross-sectional studyDegenerative eye diseasesAfrican ancestryVeteran ProgramGenetic risk scoreAggressive treatmentGlaucoma surgeryEarly treatmentIrreversible blindnessEye diseaseHigh riskRisk scoreIncremental riskVisual impairmentGenetic riskVeteransRisk variants
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply