Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer
Robles-Oteíza C, Hastings K, Choi J, Sirois I, Ravi A, Expósito F, de Miguel F, Knight J, López-Giráldez F, Choi H, Socci N, Merghoub T, Awad M, Getz G, Gainor J, Hellmann M, Caron É, Kaech S, Politi K. Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer. Journal Of Experimental Medicine 2024, 222: e20231106. PMID: 39585348, DOI: 10.1084/jem.20231106.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsNon-small cell lung cancerAcquired resistanceCheckpoint inhibitorsResistant tumorsPatients treated with anti-PD-1/PD-L1 therapyAnti-PD-1/PD-L1 therapyLung cancerResistance to immune checkpoint inhibitorsAssociated with decreased progression-free survivalHypoxia activated pro-drugsTargeting hypoxic tumor regionsTreat non-small cell lung cancerAnti-CTLA-4Anti-PD-1Immune checkpoint inhibitionTumor metabolic featuresProgression-free survivalCell lung cancerResistant cancer cellsHypoxic tumor regionsMHC-II levelsRegions of hypoxiaKnock-outCheckpoint inhibitionPlasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy in pancreatic ductal adenocarcinoma
Kim I, Diamond M, Yuan S, Kemp S, Kahn B, Li Q, Lin J, Li J, Norgard R, Thomas S, Merolle M, Katsuda T, Tobias J, Baslan T, Politi K, Vonderheide R, Stanger B. Plasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy in pancreatic ductal adenocarcinoma. Nature Communications 2024, 15: 1532. PMID: 38378697, PMCID: PMC10879147, DOI: 10.1038/s41467-024-46048-7.Peer-Reviewed Original ResearchConceptsPancreatic ductal adenocarcinomaEpithelial-to-mesenchymal transitionResistance to immunotherapyT cell killingDuctal adenocarcinomaAcquired resistance to immunotherapyResistance to cancer immunotherapyMouse model of pancreatic ductal adenocarcinomaModel of pancreatic ductal adenocarcinomaExpression of immune checkpointsInterferon regulatory factor 6Effect of TNF-aEMT transcription factor ZEB1Antigen presentation machineryTumor immune microenvironmentCell-intrinsic defectsPro-apoptotic effectsPresentation machineryCancer immunotherapyImmune checkpointsTumor relapseImmune microenvironmentPrimary resistanceT cellsAcquired resistance