1991
Potentiation of the effects of reward-related stimuli by dopaminergic-dependent mechanisms in the nucleus accumbens
Cador M, Taylor J, Robbins T. Potentiation of the effects of reward-related stimuli by dopaminergic-dependent mechanisms in the nucleus accumbens. Psychopharmacology 1991, 104: 377-385. PMID: 1924645, DOI: 10.1007/bf02246039.Peer-Reviewed Original ResearchConceptsDorsal noradrenergic bundleDose-dependent increaseDA-dependent mechanismSignificant dose-dependent increaseSmaller infusion volumesDA infusionDA receptorsAlpha-flupenthixolNoradrenergic bundleSystemic doseProfound depletionNucleus accumbensReward-related processesInfusion volumeNeurotoxic lesionsNA levelsNeurochemical mediationNoradrenalinePotentiationCONDITIONED REINFORCEMENTDopamineReward-related stimuliConditioned reinforcersAmphetamineDosesYohimbine co-treatment during chronic morphine administration attenuates naloxone-precipitated withdrawal without diminishing tail-flick analgesia in rats
Taylor J, Lewis V, Elsworth J, Pivirotto P, Roth R, Redmond D. Yohimbine co-treatment during chronic morphine administration attenuates naloxone-precipitated withdrawal without diminishing tail-flick analgesia in rats. Psychopharmacology 1991, 103: 407-414. PMID: 2057541, DOI: 10.1007/bf02244297.Peer-Reviewed Original ResearchMeSH KeywordsAnalgesicsAnimalsBehavior, AnimalDrug ImplantsMaleMorphineNaloxoneRatsRats, Inbred StrainsReaction TimeSubstance Withdrawal SyndromeYohimbineConceptsChronic morphine administrationTail-flick latencyMorphine treatmentMorphine administrationMorphine withdrawalNoradrenergic activityAlpha 2 antagonist yohimbineAlpha-2 adrenergic receptorsTail-flick analgesiaChronic drug treatmentNaloxone-precipitated withdrawalDose-dependent mannerAdrenergic hyperactivityOpioid administrationOpioid analgesiaFlick latencyNeuronal hyperactivityMorphine pelletsWithdrawal signsAbnormal postureNoradrenergic systemPenile erectionSaline controlsDrug treatmentAnalgesia
1988
Clonidine infusions into the locus coeruleus attenuate behavioral and neurochemical changes associated with naloxone-precipitated withdrawal
Taylor J, Elsworth J, Garcia E, Grant S, Roth R, Redmond D. Clonidine infusions into the locus coeruleus attenuate behavioral and neurochemical changes associated with naloxone-precipitated withdrawal. Psychopharmacology 1988, 96: 121-134. PMID: 3147472, DOI: 10.1007/bf02431544.Peer-Reviewed Original ResearchConceptsNaloxone-precipitated withdrawalDorsal parabrachial nucleusAlpha-2 adrenergic receptorsWet dog shakesLocus coeruleusClonidine infusionMHPG concentrationsOpiate withdrawalAlpha-2 adrenergic agonistsAnti-withdrawal actionWithdrawal-induced increasesBlood-brain barrierInfusion of clonidineNucleus locus coeruleusOccurrence of diarrheaClonidine's abilityLC infusionBrain concentrationsNoradrenergic neuronsST-91MHPG levelsPeripheral injectionWithdrawal signsNeurochemical changesParabrachial nucleus
1986
6-Hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine
Taylor J, Robbins T. 6-Hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychopharmacology 1986, 90: 390-397. PMID: 3097729, DOI: 10.1007/bf00179197.Peer-Reviewed Original Research
1984
Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens
Taylor J, Robbins T. Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 1984, 84: 405-412. PMID: 6440188, DOI: 10.1007/bf00555222.Peer-Reviewed Original Research