2024
A FAIR, open-source virtual reality platform for dendritic spine analysis
Reimer M, Kauer S, Benson C, King J, Patwa S, Feng S, Estacion M, Bangalore L, Waxman S, Tan A. A FAIR, open-source virtual reality platform for dendritic spine analysis. Patterns 2024, 5: 101041. PMID: 39568639, PMCID: PMC11573899, DOI: 10.1016/j.patter.2024.101041.Peer-Reviewed Original ResearchVirtual realityVirtual reality platformSoftware ecosystemReality platformData standardSuperior accuracyDatasetWorkflowValidation processDendritic spine morphologySpine analysisDendritic spinesReconstruction techniqueSpine lengthMethod's superior accuracyDendritic spine lengthSpine morphologyMetricsMorphological metricsNeurodataFairness
2021
Conditional RAC1 knockout in motor neurons restores H-reflex rate-dependent depression after spinal cord injury
Benson CA, Olson KL, Patwa S, Reimer ML, Bangalore L, Hill M, Waxman SG, Tan AM. Conditional RAC1 knockout in motor neurons restores H-reflex rate-dependent depression after spinal cord injury. Scientific Reports 2021, 11: 7838. PMID: 33837249, PMCID: PMC8035187, DOI: 10.1038/s41598-021-87476-5.Peer-Reviewed Original ResearchConceptsSpinal cord injuryDendritic spine dysgenesisMotor neuronsSpine dysgenesisSCI animalsHyperexcitability disordersCord injurySpinal alpha motor neuronsVentral horn motor neuronsAbnormal dendritic spine morphologyRac1 knockoutH-reflex pathwayRate-dependent depressionAlpha motor neuronsDevelopment of spasticityAdeno-associated viralMushroom dendritic spinesSpine head sizeOverall spine lengthDendritic spine morphologyRac1 protein expressionNeuronal hyperexcitabilityMajor complicationsClinical symptomsReflex excitability
2020
Core principles for the implementation of the neurodata without borders data standard
Reimer ML, Bangalore L, Waxman SG, Tan AM. Core principles for the implementation of the neurodata without borders data standard. Journal Of Neuroscience Methods 2020, 348: 108972. PMID: 33157146, DOI: 10.1016/j.jneumeth.2020.108972.Peer-Reviewed Original ResearchConceptsBig data analyticsData standardsData analyticsDatabase interfaceJupyter notebooksBig data analytics applicationsData analytics applicationsData analytical capabilitiesNeurophysiology dataDatabase technologyDatabase operationsInternational Brain LaboratoryAnalytics applicationsData queryData integrityData sharingProcess transparencyExisting methodsDiverse modalitiesAnalyticsDesign principlesSingle formatNeurodataHistorical dataDiverse sourcesDendritic Spine Dynamics after Peripheral Nerve Injury: An Intravital Structural Study
Benson CA, Fenrich KK, Olson KL, Patwa S, Bangalore L, Waxman SG, Tan AM. Dendritic Spine Dynamics after Peripheral Nerve Injury: An Intravital Structural Study. Journal Of Neuroscience 2020, 40: 4297-4308. PMID: 32371602, PMCID: PMC7252482, DOI: 10.1523/jneurosci.2858-19.2020.Peer-Reviewed Original ResearchConceptsDendritic spine dynamicsInjury-induced painPeripheral nerve injuryNeuropathic painDorsal hornSpine dynamicsNerve injuryPeripheral nerve injury-induced painNerve injury-induced painSuperficial dorsal horn neuronsSpinal cord dorsal hornDorsal horn neuronsSuperficial dorsal hornMechanisms of painDendritic spine dysgenesisContext of injuryPostmortem tissue analysisSame dendritic branchRepeat imagingMale miceMedical conditionsEffective treatmentPainSpine dysgenesisDendritic spines
2019
Spinal cord motor neuron plasticity accompanies second‐degree burn injury and chronic pain
Patwa S, Benson CA, Dyer L, Olson K, Bangalore L, Hill M, Waxman SG, Tan AM. Spinal cord motor neuron plasticity accompanies second‐degree burn injury and chronic pain. Physiological Reports 2019, 7: e14288. PMID: 31858746, PMCID: PMC6923170, DOI: 10.14814/phy2.14288.Peer-Reviewed Original ResearchConceptsSecond-degree burn injuryCentral nervous systemBurn injuryDrug withdrawalMajor public health challengeMotor neuron plasticityDendritic spine densityAlpha motor neuronsInjury-induced changesDendritic spine dysgenesisNervous system traumaDendritic spine changesPublic health challengeThermal burn injurySpinal cord sensoryDendritic spine morphologyMotor neuron structureChronic painSpine densitySystem traumaNeuron plasticitySpinal cordIntractable complicationMotor neuronsSensory disorders
2016
Dendritic spine remodeling following early and late Rac1 inhibition after spinal cord injury: evidence for a pain biomarker
Zhao P, Hill M, Liu S, Chen L, Bangalore L, Waxman SG, Tan AM. Dendritic spine remodeling following early and late Rac1 inhibition after spinal cord injury: evidence for a pain biomarker. Journal Of Neurophysiology 2016, 115: 2893-2910. PMID: 26936986, PMCID: PMC4922610, DOI: 10.1152/jn.01057.2015.Peer-Reviewed Original ResearchConceptsSpinal cord injuryNeuropathic painDendritic spine dysgenesisDendritic spinesCord injurySpine dysgenesisDorsal horn neuronsSpine profilesDendritic spine remodelingEffective clinical translationSensory dysfunctionSignificant complicationsNociceptive systemPain biomarkersSpine remodelingClinical conditionsPreclinical studiesRac1 activityEffective treatmentPainDrug responsivenessStructural biomarkersDisease statesRac1 inhibitionBiomarkers
1999
Mutations in the heatshock cognate 70 protein (hsc4) modulate Notch signaling.
Hing HK, Bangalore L, Sun X, Artavanis-Tsakonas S. Mutations in the heatshock cognate 70 protein (hsc4) modulate Notch signaling. European Journal Of Cell Biology 1999, 78: 690-7. PMID: 10569241, DOI: 10.1016/S0171-9335(99)80037-5.Peer-Reviewed Original Research
1997
Synergy between suppressor of Hairless and Notch in regulation of Enhancer of split m gamma and m delta expression.
Eastman DS, Slee R, Skoufos E, Bangalore L, Bray S, Delidakis C. Synergy between suppressor of Hairless and Notch in regulation of Enhancer of split m gamma and m delta expression. Molecular And Cellular Biology 1997, 17: 5620-8. PMID: 9271437, PMCID: PMC232410.Peer-Reviewed Original Research
1992
Antiserum raised against a synthetic phosphotyrosine-containing peptide selectively recognizes p185neu/erbB-2 and the epidermal growth factor receptor.
Bangalore L, Tanner AJ, Laudano AP, Stern DF. Antiserum raised against a synthetic phosphotyrosine-containing peptide selectively recognizes p185neu/erbB-2 and the epidermal growth factor receptor. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 11637-11641. PMID: 1280833, PMCID: PMC50608, DOI: 10.1073/pnas.89.23.11637.Peer-Reviewed Original ResearchAn extra cysteine proximal to the transmembrane domain induces differential cross-linking of p185neu and p185neu.
Cao H, Bangalore L, Dompé C, Bormann BJ, Stern DF. An extra cysteine proximal to the transmembrane domain induces differential cross-linking of p185neu and p185neu. Journal Of Biological Chemistry 1992, 267: 20489-20492. PMID: 1356980, DOI: 10.1016/s0021-9258(19)88728-8.Peer-Reviewed Original ResearchA subdomain in the transmembrane domain is necessary for p185neu* activation.
Cao H, Bangalore L, Bormann BJ, Stern DF. A subdomain in the transmembrane domain is necessary for p185neu* activation. The EMBO Journal 1992, 11: 923-932. PMID: 1347745, PMCID: PMC556533, DOI: 10.1002/j.1460-2075.1992.tb05131.x.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAmino Acid SequenceAnimalsBase SequenceBlotting, WesternCell MembraneElectrophoresis, Polyacrylamide GelErbB ReceptorsGliomaGlutamatesGlutamic AcidMiceMolecular Sequence DataMutagenesis, Site-DirectedNeuroblastomaPrecipitin TestsProtein-Tyrosine KinasesProto-Oncogene ProteinsRatsReceptor, ErbB-2Signal TransductionValineConceptsTransmembrane domainTyrosine kinase activityKinase activityElevated tyrosine kinase activitySite-directed mutagenesisSpecific amino acidsEpidermal growth factor receptorGlutamic acidGrowth factor receptorEGF receptorPrimary structureAmino acidsFactor receptorProteinSpecific interactionsActivationDomainMutagenesisReceptorsMolecular weightAcidNeu proteinP185neuHigh propensityRole
Others
- Bangalore, L and Waxman, SG. Myelin, impulse conduction, and the pathophysiology of demyelination. In Neuroglia (3 ed.) Ransom, B.R., and Kettenmann, H. (eds), Oxford University Press, New York, 2013.Peer-Reviewed Original Research
- Waxman, SG and Bangalore, L. Electrophysiological Consequences of Myelination and Demye-lination. In: Myelin Biology and Disorders. Lazzarini, R. (ed), Academic Press, New York, 2004.Peer-Reviewed Original Research
- Waxman, SG and Bangalore, L. Myelin function and saltatory conduction. In: Neuroglia. Ransom, B.R., and Kettenmann, H. (eds), Oxford University Press, New York, 2004.Peer-Reviewed Original Research
- Bangalore, L. Brain Development (Gray Matter Series). Chelsea House Publications, New York, NY, 2007.Peer-Reviewed Original Research
- Bangalore, L., Black, J., Carrithers, M., and Waxman, SG. Sodium channel expression and function in Multiple Sclerosis. In: Multiple Sclerosis: Recovery of Function and Neurorehabilitation, Kesselring, J., Comi, G., and Thompson, A. (eds), Cambridge University Press. London, 2010.Peer-Reviewed Original Research