2020
Impaired hypocretin/orexin system alters responses to salient stimuli in obese male mice
Tan Y, Hang F, Liu ZW, Stoiljkovic M, Wu M, Tu Y, Han W, Lee AM, Kelley C, Hajos M, Lu L, de Lecea L, de Araujo I, Picciotto M, Horvath TL, Gao XB. Impaired hypocretin/orexin system alters responses to salient stimuli in obese male mice. Journal Of Clinical Investigation 2020, 130: 4985-4998. PMID: 32516139, PMCID: PMC7456212, DOI: 10.1172/jci130889.Peer-Reviewed Original ResearchConceptsHcrt cellsObese miceDiet-induced obese miceObese male miceExcessive energy intakeNeuropeptide hypocretin/orexinHypocretin/orexinHcrt neuronsMale miceHcrt systemClinical studiesCommon causeSynaptic transmissionObese animalsEnergy intakeAcute stressCognitive functionSalient stimuliAlters responsesExact mechanismMiceHomeostatic regulationNeuronal networksBehavioral changesNeurons
2014
Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding
Kim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J, Liu ZW, Zimmer MR, Jeong JK, Szigeti-Buck K, Gao Y, Garcia-Caceres C, Yi CX, Salmaso N, Vaccarino FM, Chowen J, Diano S, Dietrich MO, Tschöp MH, Horvath TL. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nature Neuroscience 2014, 17: 908-910. PMID: 24880214, PMCID: PMC4113214, DOI: 10.1038/nn.3725.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAstrocytesCell CountEatingExcitatory Postsynaptic PotentialsGlial Fibrillary Acidic ProteinHypothalamusImmunohistochemistryIn Situ HybridizationLeptinMaleMelanocortinsMiceMice, KnockoutMicroscopy, ElectronNerve NetNeuronsPrimary Cell CulturePro-OpiomelanocortinPulmonary Gas ExchangeReal-Time Polymerase Chain ReactionRNA, MessengerSignal Transduction
2010
Fgfr2 Is Required for the Development of the Medial Prefrontal Cortex and Its Connections with Limbic Circuits
Stevens HE, Smith KM, Maragnoli ME, Fagel D, Borok E, Shanabrough M, Horvath TL, Vaccarino FM. Fgfr2 Is Required for the Development of the Medial Prefrontal Cortex and Its Connections with Limbic Circuits. Journal Of Neuroscience 2010, 30: 5590-5602. PMID: 20410112, PMCID: PMC2868832, DOI: 10.1523/jneurosci.5837-09.2010.Peer-Reviewed Original ResearchConceptsMedial prefrontal cortexCerebral cortexFibroblast growth factor receptorCKO miceExcitatory neuronsPrefrontal cortexCortical neuron developmentEntire cerebral cortexRadial glial cellsSpecific fibroblast growth factor receptorsGrowth factor receptorGABAergic neuronsLimbic circuitsCortical neuronsGlial cellsSubcortical stationsBed nucleusCortical developmentLimbic systemStria terminalisSynaptic terminalsSecondary decreaseNeuronal precursorsVentricular zoneNeuron development
2009
Feeding signals and brain circuitry
Dietrich MO, Horvath TL. Feeding signals and brain circuitry. European Journal Of Neuroscience 2009, 30: 1688-1696. PMID: 19878280, DOI: 10.1111/j.1460-9568.2009.06963.x.Peer-Reviewed Original Research
2006
Serotonin Reciprocally Regulates Melanocortin Neurons to Modulate Food Intake
Heisler LK, Jobst EE, Sutton GM, Zhou L, Borok E, Thornton-Jones Z, Liu HY, Zigman JM, Balthasar N, Kishi T, Lee CE, Aschkenasi CJ, Zhang CY, Yu J, Boss O, Mountjoy KG, Clifton PG, Lowell BB, Friedman JM, Horvath T, Butler AA, Elmquist JK, Cowley MA. Serotonin Reciprocally Regulates Melanocortin Neurons to Modulate Food Intake. Neuron 2006, 51: 239-249. PMID: 16846858, DOI: 10.1016/j.neuron.2006.06.004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEatingElectric StimulationMaleMiceMice, Inbred AMice, Inbred C57BLMice, KnockoutMice, ObeseMice, TransgenicNerve NetNeuronsPyridinesReceptor, Melanocortin, Type 3Receptor, Melanocortin, Type 4Receptor, Serotonin, 5-HT1BReceptors, MelanocortinSerotoninSerotonin 5-HT1 Receptor AgonistsConceptsFood intakePeripheral adiposity signalsBody weight homeostasisCentral serotonergic systemMelanocortin receptor agonistModulates food intakeSerotonin1B receptorsMelanocortin neuronsWeight homeostasisMelanocortin-3Receptor agonistSerotonergic regulationAdiposity signalsSerotonergic systemEndogenous releaseMelanocortin-4Central circuitryBody weightNeural pathwaysMelanocortin receptorsReceptorsDownstream activationAgonistsAntagonistIntake
2004
The floating blueprint of hypothalamic feeding circuits
Horvath TL, Diano S. The floating blueprint of hypothalamic feeding circuits. Nature Reviews Neuroscience 2004, 5: 662-667. PMID: 15263896, DOI: 10.1038/nrn1479.Peer-Reviewed Original ResearchConceptsHypothalamic feeding circuitsNew therapeutic avenuesMetabolic parametersFood intakeMetabolic disordersSynaptic plasticityTherapeutic avenuesLesion studiesGenetic findingsEnergy expenditureEarlier lesion studiesCircuit changesHypothalamusImportant regulatorUnexpected findingMetabolism regulationFeeding circuitFindingsIntakeAppetite
2003
The Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis
Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcia-Segura LM, Nillni EA, Mendez P, Low MJ, Sotonyi P, Friedman JM, Liu H, Pinto S, Colmers WF, Cone RD, Horvath TL. The Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis. Neuron 2003, 37: 649-661. PMID: 12597862, DOI: 10.1016/s0896-6273(03)00063-1.Peer-Reviewed Original ResearchMeSH KeywordsAgouti-Related ProteinAnimalsCentral Nervous SystemCorticotropin-Releasing HormoneEnergy MetabolismFemaleGhrelinHomeostasisHypothalamusIn Vitro TechniquesIntercellular Signaling Peptides and ProteinsLuminescent ProteinsMiceMice, KnockoutMice, TransgenicNerve NetNeuronsNeuropeptide YOrgan SpecificityParaventricular Hypothalamic NucleusPatch-Clamp TechniquesPeptide HormonesPresynaptic TerminalsPro-OpiomelanocortinProtein BindingProtein BiosynthesisProteinsRatsConceptsCorticotropin-releasing hormoneNeuropeptide YNPY neuronsHypothalamic circuitsGastrointestinal peptide hormone ghrelinEffects of NPYEnergy homeostasisArcuate NPY neuronsRelease of ghrelinExpression of ghrelinMechanism of actionPeptide hormone ghrelinHypothalamic actionOrexigenic peptideHypothalamic nucleiHormone ghrelinParaventricular nucleusProopiomelanocortin (POMC) productsThird ventricleGhrelinPresynaptic terminalsElectrophysiological recordingsNeuronsHypothalamusHomeostasis
2001
Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus
Cowley M, Smart J, Rubinstein M, Cerdán M, Diano S, Horvath T, Cone R, Low M. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001, 411: 480-484. PMID: 11373681, DOI: 10.1038/35078085.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, Genetically ModifiedAnorexiaArcuate Nucleus of HypothalamusElectrophysiologyEvoked PotentialsGamma-Aminobutyric AcidGreen Fluorescent ProteinsLeptinLuminescent ProteinsMaleMiceMice, Inbred C57BLNerve NetNeural InhibitionNeuronsNeuropeptide YPro-OpiomelanocortinConceptsAnorexigenic POMC neuronsPOMC neuronsArcuate nucleusLeptin actionLeptin-deficient humansLepob/Lepob miceLeptin receptor expressionLong-term energy balanceNonspecific cation channelGABA neuronsOrexigenic neuropeptidesObese humansAdipocyte hormoneNeuropeptide YLeptin resistanceElevated leptinReceptor expressionLepob miceMelanocortin peptidesTransgenic miceLeptinAction potentialsNeuropeptide modulatorsCommon obesityElectrophysiological recordings