2020
Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual Cortex
Wang BS, Bernardez Sarria MS, An X, He M, Alam NM, Prusky GT, Crair MC, Huang ZJ. Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual Cortex. Neuron 2020, 109: 502-515.e7. PMID: 33290732, PMCID: PMC7943176, DOI: 10.1016/j.neuron.2020.11.004.Peer-Reviewed Original ResearchConceptsPrimary visual cortexVisual cortexTranscallosal pathwayVisual fieldDeficient binocular visionGABAergic chandelier cellsBinocular circuitsBinocular visionChandelier cellsRetinal activityTranscallosal projectionsGeniculocortical inputCallosal activityCenter visual fieldBinocular regionCortexMassive apoptosisDevelopmental assemblyCritical periodV1IpsiBlockadePathwayBinocularityMice
2019
Visual Cortex Gains Independence from Peripheral Drive before Eye Opening
Gribizis A, Ge X, Daigle TL, Ackman JB, Zeng H, Lee D, Crair MC. Visual Cortex Gains Independence from Peripheral Drive before Eye Opening. Neuron 2019, 104: 711-723.e3. PMID: 31561919, PMCID: PMC6872942, DOI: 10.1016/j.neuron.2019.08.015.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsFemaleMaleMice, Inbred C57BLNeurogenesisSuperior ColliculiVisual CortexVisual PathwaysConceptsSuperior colliculusEarly functional developmentSpontaneous neuronal activitySecond postnatal weekPrimary visual cortexPeripheral driveCortex maturesRetinal activityPostnatal weekNeuronal activityDirect projectionsVisual cortexMammalian brainSensory peripheryVisual-spatial perceptionEye openingFunctional developmentPeripheral activityColliculusWeeksDistinct pathwaysPathwayRelative functionV1ThalamusSynapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1
Ribic A, Crair MC, Biederer T. Synapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1. Cell Reports 2019, 26: 381-393.e6. PMID: 30625321, PMCID: PMC6345548, DOI: 10.1016/j.celrep.2018.12.069.Peer-Reviewed Original ResearchConceptsCortical plasticityCell adhesion molecule-1Critical periodJuvenile-like plasticityAdhesion molecule-1Primary visual cortexVisual critical periodThalamocortical inputsCortical maturationCircuit maturationV1 plasticityParvalbumin interneuronsFeedforward inhibitionSynaptic cell adhesion molecule 1Cell-autonomous mechanismsBrief lossCortical responsesSynaptic lociMolecule-1Visual cortexSynaptic factorsInterneuronsSpecific knockdownAdulthoodEyes
2018
Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas
Yao K, Qiu S, Wang YV, Park SJH, Mohns EJ, Mehta B, Liu X, Chang B, Zenisek D, Crair MC, Demb JB, Chen B. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature 2018, 560: 484-488. PMID: 30111842, PMCID: PMC6107416, DOI: 10.1038/s41586-018-0425-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBeta CateninBlindnessCell CycleCell ProliferationCellular ReprogrammingDisease Models, AnimalFemaleGTP-Binding Protein alpha SubunitsHeterotrimeric GTP-Binding ProteinsMaleMiceNeurogenesisNeurogliaRegenerative MedicineRetinal Rod Photoreceptor CellsStem CellsTranscription FactorsTransducinVisual CortexVisual PathwaysConceptsMüller gliaGene transferMG proliferationRod photoreceptorsMammalian retinaCell fate specificationPopulations of stemSubsequent gene transferFate specificationRetinal stem cellsTranscription factorsRetinal neuronsCell cycleDouble mutant miceRegenerative machineryDe novo genesisΒ-cateninStem cellsProgenitor cellsRestoration of visionPrimary visual cortexMutant miceAbsence of injuryPhotoreceptorsRetinal injury
2017
Architecture, Function, and Assembly of the Mouse Visual System
Seabrook TA, Burbridge TJ, Crair MC, Huberman AD. Architecture, Function, and Assembly of the Mouse Visual System. Annual Review Of Neuroscience 2017, 40: 499-538. PMID: 28772103, DOI: 10.1146/annurev-neuro-071714-033842.Peer-Reviewed Original ResearchConceptsSpecific cell typesMammalian central nervous systemGenetic perturbationsModel speciesCell typesCausal testingSpeciesVivo labelingBroad scaleVisual system structuresManipulation of neuronsSensory systemsCentral nervous systemVisual circuitryPowerful toolNervous systemLarge cadreHumansMouse visual systemAdditional experimentationPathwayFunctionConvenient sizeAssemblyVisual systemReciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus
Diao Y, Cui L, Chen Y, Burbridge TJ, Han W, Wirth B, Sestan N, Crair MC, Zhang J. Reciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus. Cerebral Cortex 2017, 28: 1168-1182. PMID: 28334242, PMCID: PMC6059179, DOI: 10.1093/cercor/bhx028.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornAxonsCalciumCholera ToxinDNA-Binding ProteinsEmbryo, MammalianExcitatory Amino Acid AgonistsFeeding BehaviorGene Expression Regulation, DevelopmentalGeniculate BodiesGreen Fluorescent ProteinsHomeodomain ProteinsMiceMice, TransgenicNerve Tissue ProteinsRetinaSerine-Arginine Splicing FactorsSuperior ColliculiTranscription FactorsVisual CortexVisual PathwaysConceptsDorsal lateral geniculate nucleusLateral geniculate nucleusVentral lateral geniculate nucleusGeniculate nucleusRetinal projectionsReciprocal connectionsSuperior colliculusConditional knockoutVivo electrophysiology experimentsAbnormal retinal projectionsPrimary visual cortexDLGN neuronsCorticothalamic inputsControl miceThalamocortical tractV1 lesionsThalamus contributeRetinal innervationThalamocortical projectionsCKO miceMouse modelRetinal inputVisual cortexVisual circuitsAxon targeting
2012
Retinal waves coordinate patterned activity throughout the developing visual system
Ackman JB, Burbridge TJ, Crair MC. Retinal waves coordinate patterned activity throughout the developing visual system. Nature 2012, 490: 219-225. PMID: 23060192, PMCID: PMC3962269, DOI: 10.1038/nature11529.Peer-Reviewed Original ResearchConceptsActivity-dependent developmentSpontaneous retinal activityRetinal wavesRetinal activityEntire visual systemPatterned activitySecondary visual areasPrimary visual cortexOnset of visionCholinergic neurotransmissionNeonatal miceNeuronal activitySpontaneous activityNervous systemVisual cortexVertebrate nervous systemVisual areasVisual systemVisual fieldGenetic factorsEye openingFunctional developmentOnsetActivityNeurotransmission
2011
An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development
Xu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC. An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development. Neuron 2011, 70: 1115-1127. PMID: 21689598, PMCID: PMC3119851, DOI: 10.1016/j.neuron.2011.04.028.Peer-Reviewed Original ResearchConceptsSpontaneous retinal activityRetinal activityRetinal ganglion cell projectionsEye-specific segregationGanglion cell projectionsSpontaneous retinal wavesActivity-dependent refinementRetinal ganglion cellsMouse visual systemComplex neural circuitsEye of originRetinal wavesGanglion cellsRetinotopic refinementNeuronal activitySpontaneous activityMammalian visual systemAcetylcholine receptorsNeuronal connectivityMammalian brainNeural circuitsOverall activity levelsActivity levelsBrainVisual system
2008
State-Dependent Bidirectional Modification of Somatic Inhibition in Neocortical Pyramidal Cells
Kurotani T, Yamada K, Yoshimura Y, Crair MC, Komatsu Y. State-Dependent Bidirectional Modification of Somatic Inhibition in Neocortical Pyramidal Cells. Neuron 2008, 57: 905-916. PMID: 18367091, PMCID: PMC2880402, DOI: 10.1016/j.neuron.2008.01.030.Peer-Reviewed Original ResearchMeSH Keywords2-Amino-5-phosphonovalerateAction PotentialsAnimalsAnimals, NewbornBicucullineDendritesDose-Response Relationship, DrugDose-Response Relationship, RadiationElectric StimulationExcitatory Amino Acid AntagonistsGABA AntagonistsGamma-Aminobutyric AcidInhibitory Postsynaptic PotentialsNeural InhibitionPatch-Clamp TechniquesPyramidal CellsQuinoxalinesRatsRats, Sprague-DawleySpider VenomsVisual CortexConceptsL-type Ca2Slow-wave sleepSomatic inhibitionPyramidal neuronsLayer 5 pyramidal neuronsBidirectional modificationSlow membrane oscillationsRat visual cortexCortical pyramidal neuronsR-type Ca2Neocortical pyramidal cellsBehavioral statesNeuron responsivenessPyramidal cellsDepolarized phaseRepetitive firingVisual cortexReceptor exocytosisChannel activationInhibitionPotentiationNeuronsSleepMembrane oscillationsDepression
2007
Developmental Homeostasis of Mouse Retinocollicular Synapses
Chandrasekaran AR, Shah RD, Crair MC. Developmental Homeostasis of Mouse Retinocollicular Synapses. Journal Of Neuroscience 2007, 27: 1746-1755. PMID: 17301182, PMCID: PMC6673732, DOI: 10.1523/jneurosci.4383-06.2007.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBrain MappingExcitatory Amino Acid AgonistsHomeostasisMembrane PotentialsMiceMice, Inbred C57BLMice, KnockoutModels, BiologicalNeuronsN-MethylaspartateReceptors, NicotinicRetinaSuperior ColliculiSynapsesVisual CortexVisual PathwaysConceptsRetinal wavesBeta2-/- miceSpontaneous retinal wavesRetinal ganglion cellsWild-type miceActivity-dependent competitionFirst postnatal weekTotal integrated responseLarge retinal areasTotal synaptic inputNeuronal receptive fieldsReceptive fieldsGanglion cellsPerturbation of activitiesSynaptic transmissionPostnatal weekResponse homeostasisSynaptic inputsRetinal areaRetinal inputSuperior colliculusStrong synapsesVisual cortexMutant miceRetinotopic mapping
2000
Neurotrophin-4/5 Alters Responses and Blocks the Effect of Monocular Deprivation in Cat Visual Cortex during the Critical Period
Gillespie D, Crair M, Stryker M. Neurotrophin-4/5 Alters Responses and Blocks the Effect of Monocular Deprivation in Cat Visual Cortex during the Critical Period. Journal Of Neuroscience 2000, 20: 9174-9186. PMID: 11124995, PMCID: PMC2412905, DOI: 10.1523/jneurosci.20-24-09174.2000.Peer-Reviewed Original ResearchConceptsDeprived eyeVisual cortexNT-4/5Monocular deprivationCritical periodIntrinsic signal optical imagingEarly postnatal lifeCat visual cortexCortical cellsNT-3Ocular dominancePostnatal lifeAlters responsesVisual stimulationCortexCorrelated activityHr exposureNeural responsesStimulus orientationEyesInfusionNeuronsDeprivationResponsePeriodEmergence of ocular dominance columns in cat visual cortex by 2 weeks of age
Crair M, Horton J, Antonini A, Stryker M. Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age. The Journal Of Comparative Neurology 2000, 430: 235-249. PMID: 11135259, PMCID: PMC2412906, DOI: 10.1002/1096-9861(20010205)430:2<235::aid-cne1028>3.0.co;2-p.Peer-Reviewed Original ResearchConceptsOcular dominance columnsCat visual cortexOcular dominance column formationWeeks of ageGeniculocortical projectionsGeniculocortical afferentsVisual cortexGeniculocortical afferent segregationPostnatal day 14Lateral geniculate nucleus inputsArea of cortexPrevious anatomic studiesRetrograde labelingOcular dominance patternsAnatomic correlatesAnatomic studyVisual deprivationTransneuronal labelAfferent segregationDay 14Eye dominanceAfferentsAnatomic dataCortexSecond week
1998
Morphology of Single Geniculocortical Afferents and Functional Recovery of the Visual Cortex after Reverse Monocular Deprivation in the Kitten
Antonini A, Gillespie DC, Crair MC, Stryker MP. Morphology of Single Geniculocortical Afferents and Functional Recovery of the Visual Cortex after Reverse Monocular Deprivation in the Kitten. Journal Of Neuroscience 1998, 18: 9896-9909. PMID: 9822746, PMCID: PMC2452997, DOI: 10.1523/jneurosci.18-23-09896.1998.Peer-Reviewed Original ResearchConceptsLateral geniculate nucleusMonocular deprivationFunctional recoveryGeniculocortical afferentsArea 17Visual cortical responsesInitial deprivationSimilar proportional changesTotal arbor lengthPossible anatomical basisLayer IVArbor lengthGeniculate nucleusCortical responsesAfferent arborsSecond deprivationLamina ANormal animalsVisual cortexPlastic changesAnatomical basisInitial weeksArborsEyesAfferentsThe Role of Visual Experience in the Development of Columns in Cat Visual Cortex
Crair M, Gillespie D, Stryker M. The Role of Visual Experience in the Development of Columns in Cat Visual Cortex. Science 1998, 279: 566-570. PMID: 9438851, PMCID: PMC2453000, DOI: 10.1126/science.279.5350.566.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain MappingCatsMicroelectrodesPhotic StimulationVision, MonocularVision, OcularVisual CortexVisual PathwaysConceptsCortical mapsVisual cortexCat visual cortexPrimary visual cortexWeeks of ageTime course parallelContralateral eyeCerebral cortexCortical plasticityCortical neuronsOcular dominanceVisual deprivationPattern visionCortexWeeksEyesVisual experienceCritical periodCourse parallelCatsNeuronsResponse
1997
Relationship between the Ocular Dominance and Orientation Maps in Visual Cortex of Monocularly Deprived Cats
Crair M, Ruthazer E, Gillespie D, Stryker M. Relationship between the Ocular Dominance and Orientation Maps in Visual Cortex of Monocularly Deprived Cats. Neuron 1997, 19: 307-318. PMID: 9292721, DOI: 10.1016/s0896-6273(00)80941-1.Peer-Reviewed Original ResearchConceptsCortical plasticityVisual cortexSame stimulus orientationSingle-unit recordingsStimulus orientationDeprived eyeIntrinsic optical signalsMonocular deprivationOcular dominanceOcular dominance mapsSelective lossOrientation tuningClosed eyesCritical periodCortexEyesNeuronsFunctional mapsBrief periodCompelling evidenceKittensOcular Dominance Peaks at Pinwheel Center Singularities of the Orientation Map in Cat Visual Cortex
Crair M, Ruthazer E, Gillespie D, Stryker M. Ocular Dominance Peaks at Pinwheel Center Singularities of the Orientation Map in Cat Visual Cortex. Journal Of Neurophysiology 1997, 77: 3381-3385. PMID: 9212282, DOI: 10.1152/jn.1997.77.6.3381.Peer-Reviewed Original Research