2020
Protein-coding changes preceded cis-regulatory gains in a newly evolved transcription circuit
Britton C, Sorrells T, Johnson A. Protein-coding changes preceded cis-regulatory gains in a newly evolved transcription circuit. Science 2020, 367: 96-100. PMID: 31896718, PMCID: PMC8284397, DOI: 10.1126/science.aax5217.Peer-Reviewed Original Research
2018
Intrinsic cooperativity potentiates parallel cis-regulatory evolution
Sorrells T, Johnson A, Howard C, Britton C, Fowler K, Feigerle J, Weil P, Johnson A. Intrinsic cooperativity potentiates parallel cis-regulatory evolution. ELife 2018, 7: e37563. PMID: 30198843, PMCID: PMC6173580, DOI: 10.7554/elife.37563.Peer-Reviewed Original ResearchConceptsRegulatory sequencesGeneral transcription factor TFIIDCis-regulatory evolutionRibosomal protein genesTranscription factor TFIIDCommon interaction partnersFungal lineagesAncestral regulatorFactor TFIIDIndependent lineagesEvolutionary eventsGenomic scaleTranscription regulatorsTranscriptional activationParallel evolutionProtein geneRegulatory proteinsSecond regulatorInteraction partnersRandom mutationsFunctional sitesIntrinsic cooperativityMcm1Rap1Regulator
2015
Intersecting transcription networks constrain gene regulatory evolution
Sorrells T, Booth L, Tuch B, Johnson A. Intersecting transcription networks constrain gene regulatory evolution. Nature 2015, 523: 361-365. PMID: 26153861, PMCID: PMC4531262, DOI: 10.1038/nature14613.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding SitesDNA, FungalDNA-Binding ProteinsEnhancer Elements, GeneticEpistasis, GeneticEvolution, MolecularGene Expression Regulation, FungalGene Regulatory NetworksGenes, FungalKluyveromycesMating FactorPeptidesPheromonesPromoter Regions, GeneticSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsTranscription FactorsConceptsGene regulatory evolutionGene regulatory networksRegulatory DNARegulatory evolutionTranscription networksCommon ancestorRegulatory networksEpistatic interactionsSpecific genesSingle proteinMutation effectsSecond pathwayCandida albicansSuch interactionsSpecific changesSaccharomycesAncestorGenesEvolutionRegulatorProteinDNAMutationsPathwayInteraction
2012
A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans
Nobile C, Fox E, Nett J, Sorrells T, Mitrovich Q, Hernday A, Tuch B, Andes D, Johnson A. A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans. Cell 2012, 148: 126-138. PMID: 22265407, PMCID: PMC3266547, DOI: 10.1016/j.cell.2011.10.048.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiofilmsCandida albicansCandidiasis, OralCandidiasis, VulvovaginalCatheter-Related InfectionsDisease Models, AnimalEvolution, MolecularFemaleGene Expression ProfilingGene Expression Regulation, FungalGene Regulatory NetworksGenes, FungalMaleMicroscopy, ConfocalRatsRats, Sprague-DawleyStomatitis, DentureConceptsBiofilm formationPathogenic yeast Candida albicansGenome-wide approachesComplex cell behaviorsAncient genesYeast Candida albicansGenetic screenTranscriptional networksEvolutionary analysisTranscription regulatorsTranscription circuitsMammalian hostsTarget genesBiofilm networksBiofilm developmentCandida albicansGenesCell behaviorIndividual cellsSuspension culturesMedical device-associated infectionsDrug resistanceBiofilmsMicrobesRegulator