2021
Presynaptic Kv3 channels are required for fast and slow endocytosis of synaptic vesicles
Wu XS, Subramanian S, Zhang Y, Shi B, Xia J, Li T, Guo X, El-Hassar L, Szigeti-Buck K, Henao-Mejia J, Flavell RA, Horvath TL, Jonas EA, Kaczmarek LK, Wu LG. Presynaptic Kv3 channels are required for fast and slow endocytosis of synaptic vesicles. Neuron 2021, 109: 938-946.e5. PMID: 33508244, PMCID: PMC7979485, DOI: 10.1016/j.neuron.2021.01.006.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsCHO CellsCricetulusEndocytosisMiceMutationPresynaptic TerminalsShaw Potassium ChannelsSynaptic TransmissionSynaptic VesiclesConceptsSlow endocytosisVesicle mobilizationF-actin cytoskeletonChannel mutationsPotassium channelsKv3.3 proteinsInhibits endocytosisRapid endocytosisNovel functionF-actinEndocytosisCrucial functionSynaptic vesiclesFamily channelsSynaptic transmissionDiscovery decadesMembrane potentialNeurotransmitter releaseDiverse neurological disordersIon conductanceMutationsReleasable poolMouse nerve terminalsPotassium channel mutationsPathological effects
2010
Gonadotropin-Releasing Hormone Fibers Contact POMC Neurons in the Hypothalamic Arcuate Nucleus
Sotonyi P, Mezei G, Racz B, Dallman MF, Abizaid A, Horvath TL. Gonadotropin-Releasing Hormone Fibers Contact POMC Neurons in the Hypothalamic Arcuate Nucleus. Reproductive Sciences 2010, 17: 1024-1028. PMID: 20713970, DOI: 10.1177/1933719110378346.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArcuate Nucleus of HypothalamusFemaleGonadotropin-Releasing HormoneMiceNerve FibersNeuronsPresynaptic TerminalsPro-OpiomelanocortinConceptsArcuate nucleusGonadotropin-releasing hormone (GnRH) neuronsPOMC cell bodiesEnergy expenditureHypothalamic arcuate nucleusHypothalamic neuronal populationsMelanocyte stimulating hormoneHormone neuronsPOMC neuronsAnorexigenic proopiomelanocortinStimulating hormoneAnatomical proximityAxon terminalsGonadal axisGlucose homeostasisPeripheral signalsNeuronal populationsCell bodiesDirect appositionGnRHEnergy metabolismNeuronsMetabolic stateHormoneProopiomelanocortin
2008
Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia
Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, Khroyan TV, Yamanaka A, Diano S, Horvath TL, Sakurai T, Toll L, Kilduff TS. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. Journal Of Clinical Investigation 2008, 118: 2471-2481. PMID: 18551194, PMCID: PMC2423866, DOI: 10.1172/jci35115.Peer-Reviewed Original ResearchMeSH KeywordsAnalgesiaAnimalsAtaxin-3Behavior, AnimalBrainCalciumCytoplasmElectrophysiologyFemaleHypothalamus, PosteriorImmunohistochemistryIntracellular Signaling Peptides and ProteinsMaleMembrane PotentialsMiceMice, Inbred C57BLMice, TransgenicNarcotic AntagonistsNeuronsNeuropeptidesNociceptin ReceptorNuclear ProteinsOpioid PeptidesOrexinsPain ThresholdPresynaptic TerminalsReaction TimeReceptors, OpioidStress, PhysiologicalTetrodotoxinTranscription FactorsConceptsStress-induced analgesiaHcrt neuronsWild-type miceHypocretin/orexinNociceptin/orphanin FQMouse hypothalamic slicesCorticotropin-releasing factorPatch-clamp recordingsOrexin/ataxinPostsynaptic effectsPresynaptic releaseOrphanin FQElectron microscopic levelHypothalamic slicesSynaptic contactsHcrt-1Hcrt systemMouse modelAnalgesiaClamp recordingsPeptidergic systemsAction potentialsBrain tissueNeuronsInput resistance
2003
Estradiol affects axo-somatic contacts of neuroendocrine cells in the arcuate nucleus of adult rats
Parducz A, Zsarnovszky A, Naftolin F, Horvath TL. Estradiol affects axo-somatic contacts of neuroendocrine cells in the arcuate nucleus of adult rats. Neuroscience 2003, 117: 791-794. PMID: 12654332, DOI: 10.1016/s0306-4522(02)00967-3.Peer-Reviewed Original ResearchConceptsAxo-somatic contactsArcuate nucleusSynaptic plasticityGABAergic axo-somatic synapsesMorphological synaptic plasticityAxo-somatic synapsesEffects of estradiolSynapse quantificationArcuate neuronsTracer FluorogoldGonadal steroidsAnterior pituitaryAdult ratsHypophysiotropic neuronsMedian eminenceNervous systemTransient decreaseSystemic applicationNeuroendocrine cellsDisector methodNeuronsNumerical densityEstradiolFluorogoldCellsThe Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis
Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcia-Segura LM, Nillni EA, Mendez P, Low MJ, Sotonyi P, Friedman JM, Liu H, Pinto S, Colmers WF, Cone RD, Horvath TL. The Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis. Neuron 2003, 37: 649-661. PMID: 12597862, DOI: 10.1016/s0896-6273(03)00063-1.Peer-Reviewed Original ResearchMeSH KeywordsAgouti-Related ProteinAnimalsCentral Nervous SystemCorticotropin-Releasing HormoneEnergy MetabolismFemaleGhrelinHomeostasisHypothalamusIn Vitro TechniquesIntercellular Signaling Peptides and ProteinsLuminescent ProteinsMiceMice, KnockoutMice, TransgenicNerve NetNeuronsNeuropeptide YOrgan SpecificityParaventricular Hypothalamic NucleusPatch-Clamp TechniquesPeptide HormonesPresynaptic TerminalsPro-OpiomelanocortinProtein BindingProtein BiosynthesisProteinsRatsConceptsCorticotropin-releasing hormoneNeuropeptide YNPY neuronsHypothalamic circuitsGastrointestinal peptide hormone ghrelinEffects of NPYEnergy homeostasisArcuate NPY neuronsRelease of ghrelinExpression of ghrelinMechanism of actionPeptide hormone ghrelinHypothalamic actionOrexigenic peptideHypothalamic nucleiHormone ghrelinParaventricular nucleusProopiomelanocortin (POMC) productsThird ventricleGhrelinPresynaptic terminalsElectrophysiological recordingsNeuronsHypothalamusHomeostasis
1999
Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system
Horvath T, Peyron C, Diano S, Ivanov A, Aston‐Jones G, Kilduff T, van den Pol A. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. The Journal Of Comparative Neurology 1999, 415: 145-159. PMID: 10545156, DOI: 10.1002/(sici)1096-9861(19991213)415:2<145::aid-cne1>3.0.co;2-2.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsChlorocebus aethiopsFemaleHypothalamusImmunohistochemistryIntracellular Signaling Peptides and ProteinsLocus CoeruleusMacaca fascicularisMaleMicroscopy, ElectronMSH Release-Inhibiting HormoneNeuropeptidesNeurotransmitter AgentsNorepinephrineOrexinsPresynaptic TerminalsRatsRats, Sprague-DawleyTetrodotoxinTyrosine 3-MonooxygenaseConceptsLocus coeruleusSynaptic innervationNoradrenergic systemAxon terminalsTyrosine hydroxylase-immunopositive cellsAsymmetrical synaptic contactsLC-noradrenergic systemParallel electrophysiological studiesLocus coeruleus noradrenergic systemPresence of tetrodotoxinMelanin-concentrating hormoneLC neuronsAutonomic centersNoradrenergic innervationDense arborizationsExcitatory responsesHypocretin cellsSubstantia nigraSynaptic contactsHypocretin-2Lateral hypothalamusZona incertaModest depolarizationCatecholamine systemsCentral regulation
1996
Aromatase Immunoreactivity in Axon Terminals of the Vertebrate Brain
Naftolin F, Horvath T, Jakab R, Leranth C, Harada N, Balthazart J. Aromatase Immunoreactivity in Axon Terminals of the Vertebrate Brain. Neuroendocrinology 1996, 63: 149-155. PMID: 9053779, DOI: 10.1159/000126951.Peer-Reviewed Original ResearchConceptsAxon terminalsAromatase immunoreactivityAxonal processesDifferent vertebrate speciesAdult central nervous systemRole of aromataseSmall clear synaptic vesiclesCentral nervous systemClear synaptic vesiclesVertebrate speciesSubcellular locationMost vertebratesSpecific limbicNeuronal perikaryaAromatase activityElectron microscopic examinationEstrogen synthesisHypothalamic structuresSubcellular distributionSynaptic levelVertebrate brainNervous systemBrain aromataseMolecular biologyIntraneuronal production
1995
Morphological Evidence for a Galanin‐Opiate Interaction in the Rat Mediobasal Hypothalamus
Horvath T, Kalra S, Naftolin F, Leranth C. Morphological Evidence for a Galanin‐Opiate Interaction in the Rat Mediobasal Hypothalamus. Journal Of Neuroendocrinology 1995, 7: 579-588. PMID: 8704731, DOI: 10.1111/j.1365-2826.1995.tb00795.x.Peer-Reviewed Original ResearchConceptsBeta-endorphin cellsBeta-endorphin neuronsArcuate nucleusBeta-endorphinMediobasal hypothalamusImmunoreactive profilesPituitary hormone secretionBeta-endorphin releaseDay survival periodRat mediobasal hypothalamusDiaminobenzidine reactionGalanin fibersHalász knifeImmunoreactive neuronsHormone secretionContralateral sideFemale ratsHypothalamic galaninProlactin secretionAdditional ratsElectron microscopic examinationPituitary hormonesSurvival periodNeuroendocrine responsesGalanin