2011
CPG15 regulates synapse stability in the developing and adult brain
Fujino T, Leslie JH, Eavri R, Chen JL, Lin WC, Flanders GH, Borok E, Horvath TL, Nedivi E. CPG15 regulates synapse stability in the developing and adult brain. Genes & Development 2011, 25: 2674-2685. PMID: 22190461, PMCID: PMC3248687, DOI: 10.1101/gad.176172.111.Peer-Reviewed Original ResearchConceptsSynaptic maturationDendritic spinesFunctional synaptic contactsNeural circuit developmentSynaptic contactsSpine maintenanceDiolistic labelingDendritic arborsMature brainCircuit refinementSynapse stabilityAdult brainKnockout miceSynapse stabilizationCPG15Active synapsesSpine numberActivity-dependent synapseDevelopmental maturationSpineNeuronal branchesCircuit developmentGradual attritionBrainSynapses
2009
Divergent Regulation of Energy Expenditure and Hepatic Glucose Production by Insulin Receptor in Agouti-Related Protein and POMC Neurons
Lin HV, Plum L, Ono H, Gutiérrez-Juárez R, Shanabrough M, Borok E, Horvath TL, Rossetti L, Accili D. Divergent Regulation of Energy Expenditure and Hepatic Glucose Production by Insulin Receptor in Agouti-Related Protein and POMC Neurons. Diabetes 2009, 59: 337-346. PMID: 19933998, PMCID: PMC2809966, DOI: 10.2337/db09-1303.Peer-Reviewed Original ResearchConceptsHepatic glucose productionAgRP neuronsPOMC neuronsInsulin receptorEnergy expenditureInsulin actionGlucose productionInhibitory synaptic contactsSulfonylurea receptor 1 (SUR1) subunitsCentral nervous systemL1 miceProopiomelanocortin neuronsHypothalamic insulinDivergent regulationInsulin resistanceSynaptic contactsInsulin suppressionGlucose metabolismHypothalamic deficiencyNervous systemLocomotor activityDecreased expressionEnergy homeostasisINSRNeurons
2008
Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia
Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, Khroyan TV, Yamanaka A, Diano S, Horvath TL, Sakurai T, Toll L, Kilduff TS. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. Journal Of Clinical Investigation 2008, 118: 2471-2481. PMID: 18551194, PMCID: PMC2423866, DOI: 10.1172/jci35115.Peer-Reviewed Original ResearchMeSH KeywordsAnalgesiaAnimalsAtaxin-3Behavior, AnimalBrainCalciumCytoplasmElectrophysiologyFemaleHypothalamus, PosteriorImmunohistochemistryIntracellular Signaling Peptides and ProteinsMaleMembrane PotentialsMiceMice, Inbred C57BLMice, TransgenicNarcotic AntagonistsNeuronsNeuropeptidesNociceptin ReceptorNuclear ProteinsOpioid PeptidesOrexinsPain ThresholdPresynaptic TerminalsReaction TimeReceptors, OpioidStress, PhysiologicalTetrodotoxinTranscription FactorsConceptsStress-induced analgesiaHcrt neuronsWild-type miceHypocretin/orexinNociceptin/orphanin FQMouse hypothalamic slicesCorticotropin-releasing factorPatch-clamp recordingsOrexin/ataxinPostsynaptic effectsPresynaptic releaseOrphanin FQElectron microscopic levelHypothalamic slicesSynaptic contactsHcrt-1Hcrt systemMouse modelAnalgesiaClamp recordingsPeptidergic systemsAction potentialsBrain tissueNeuronsInput resistance
1999
Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system
Horvath T, Peyron C, Diano S, Ivanov A, Aston‐Jones G, Kilduff T, van den Pol A. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. The Journal Of Comparative Neurology 1999, 415: 145-159. PMID: 10545156, DOI: 10.1002/(sici)1096-9861(19991213)415:2<145::aid-cne1>3.0.co;2-2.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsChlorocebus aethiopsFemaleHypothalamusImmunohistochemistryIntracellular Signaling Peptides and ProteinsLocus CoeruleusMacaca fascicularisMaleMicroscopy, ElectronMSH Release-Inhibiting HormoneNeuropeptidesNeurotransmitter AgentsNorepinephrineOrexinsPresynaptic TerminalsRatsRats, Sprague-DawleyTetrodotoxinTyrosine 3-MonooxygenaseConceptsLocus coeruleusSynaptic innervationNoradrenergic systemAxon terminalsTyrosine hydroxylase-immunopositive cellsAsymmetrical synaptic contactsLC-noradrenergic systemParallel electrophysiological studiesLocus coeruleus noradrenergic systemPresence of tetrodotoxinMelanin-concentrating hormoneLC neuronsAutonomic centersNoradrenergic innervationDense arborizationsExcitatory responsesHypocretin cellsSubstantia nigraSynaptic contactsHypocretin-2Lateral hypothalamusZona incertaModest depolarizationCatecholamine systemsCentral regulationSynaptic Interaction between Hypocretin (Orexin) and Neuropeptide Y Cells in the Rodent and Primate Hypothalamus: A Novel Circuit Implicated in Metabolic and Endocrine Regulations
Horvath T, Diano S, van den Pol A. Synaptic Interaction between Hypocretin (Orexin) and Neuropeptide Y Cells in the Rodent and Primate Hypothalamus: A Novel Circuit Implicated in Metabolic and Endocrine Regulations. Journal Of Neuroscience 1999, 19: 1072-1087. PMID: 9920670, PMCID: PMC6782143, DOI: 10.1523/jneurosci.19-03-01072.1999.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarrier ProteinsChlorocebus aethiopsEndocrine GlandsFemaleHypothalamusIntracellular Signaling Peptides and ProteinsMaleMetabolismNeural PathwaysNeuronsNeuropeptide YNeuropeptidesOrexin ReceptorsOrexinsRatsRats, Sprague-DawleyReceptors, Cell SurfaceReceptors, G-Protein-CoupledReceptors, LeptinReceptors, NeuropeptideSynapsesConceptsHypothalamic functionCentral regulationHypocretin-containing neuronsLateral hypothalamic cellsLeptin receptor immunoreactivityNeuropeptide Y cellsDirect synaptic contactsNeuropeptide Y systemEndocrine regulationEndocrine processesNPY releaseReceptor immunoreactivityExcitatory actionHypocretin cellsSynaptic contactsArcuate nucleusLateral hypothalamusPrimate hypothalamusLeptin receptorSame neuronsHypothalamic cellsSynaptic regulationAdipose tissueHypocretinNPY
1993
Neuropeptide-Y innervation of estrogen-induced progesterone receptor-containing dopamine cells in the monkey hypothalamus: a triple labeling light and electron microscopic study
Horvath TL, Shanabrough M, Naftolin F, Leranth C. Neuropeptide-Y innervation of estrogen-induced progesterone receptor-containing dopamine cells in the monkey hypothalamus: a triple labeling light and electron microscopic study. Endocrinology 1993, 133: 405-414. PMID: 8100520, DOI: 10.1210/endo.133.1.8100520.Peer-Reviewed Original ResearchConceptsTyrosine hydroxylase-immunoreactive neuronsHydroxylase-immunoreactive neuronsProgesterone receptorSynaptic contactsAxon terminalsDopamine cellsTyrosine hydroxylase-immunopositive cellsHypophyseal hormone secretionEffects of NPYDorsomedial hypothalamic nucleusCoronal vibratome sectionsNuclear progesterone receptorPR-containing cellsAfrican green monkeysDiaminobenzidine reactionNPY axonsPeriventricular areaOVX animalsHormone secretionMonkey hypothalamusAnterior hypothalamusHypothalamic nucleiDopamine neuronsPRL releaseEstrogenNeuropeptide-Y innervation of estrogen-induced progesterone receptor-containing dopamine cells in the monkey hypothalamus: a triple labeling light and electron microscopic study
Horvath T, Shanabrough M, Naftolin F, Leranth C. Neuropeptide-Y innervation of estrogen-induced progesterone receptor-containing dopamine cells in the monkey hypothalamus: a triple labeling light and electron microscopic study. Endocrinology 1993, 133: 405-414. DOI: 10.1210/en.133.1.405.Peer-Reviewed Original ResearchTyrosine hydroxylase-immunoreactive neuronsNPY-immunoreactive axon terminalsProgesterone receptorNeuropeptide-YDopamine cellsFrequency of synaptic contactsLight brown diaminobenzidine reactionTyrosine hydroxylase-immunopositive cellsNPY-immunoreactive boutonsPR-containing cellsSynaptic contactsNuclear progesterone receptorDorsomedial hypothalamic nucleusEstrogen-treated monkeysHypophyseal hormone secretionAxon terminalsEffects of neuropeptide-YCoronal vibratome sectionsAfrican green monkeysPRL releaseOVX animalsDopamine neuronsMonkey hypothalamusHormone secretionHypothalamic nucleiLuteinizing Hormone‐Releasing Hormone and Gamma‐Aminobutyric Acid Neurons in the Medial Preoptic Area are Synaptic Targets of Dopamine Axons Originating in Anterior Periventricular Areas
Horvath T, Naftolin F, Leranth C. Luteinizing Hormone‐Releasing Hormone and Gamma‐Aminobutyric Acid Neurons in the Medial Preoptic Area are Synaptic Targets of Dopamine Axons Originating in Anterior Periventricular Areas. Journal Of Neuroendocrinology 1993, 5: 71-79. PMID: 8097941, DOI: 10.1111/j.1365-2826.1993.tb00365.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCerebral VentriclesColchicineDopamineFemaleGamma-Aminobutyric AcidGlutamate DecarboxylaseGonadotropin-Releasing HormoneImmunohistochemistryMicroscopy, ElectronNeuronsOxidopaminePhytohemagglutininsPreoptic AreaRatsRats, Sprague-DawleySynapsesTissue FixationTyrosine 3-MonooxygenaseConceptsHormone-releasing hormoneMedial preoptic areaGlutamic acid decarboxylasePhaseolus vulgaris leucoagglutininZona incertaPreoptic areaTyrosine hydroxylaseGlutamic acid decarboxylase-immunoreactive neuronsDopamine axonsTyrosine hydroxylase-immunoreactive boutonsAcid decarboxylaseGamma-aminobutyric acid (GABA) neuronsRat medial preoptic areaAnterior periventricular areaDesipramine-pretreated ratsDopamine axon terminalsAnteroventral periventricular nucleusCell of originEarly morphological signsDopaminergic connectionsGABA neuronsGABA cellsPeriventricular areaAcute degenerationSynaptic contacts
1992
GABAergic and catecholaminergic innervation of mediobasal hypothalamic β-endorphin cells projecting to the medial preoptic area
Horvath TL, Naftolin F, Leranth C. GABAergic and catecholaminergic innervation of mediobasal hypothalamic β-endorphin cells projecting to the medial preoptic area. Neuroscience 1992, 51: 391-399. PMID: 1281529, DOI: 10.1016/0306-4522(92)90323-t.Peer-Reviewed Original ResearchConceptsMedial preoptic areaPreoptic areaHormone-producing cellsArcuate nucleusHypothalamic beta-endorphin neuronsHormone-releasing hormone (LHRH) neuronsBeta-endorphin neuronsDirect estrogen actionHormone-containing neuronsVentromedial arcuate nucleusRetrograde tracer horseradish peroxidasePro-opiomelanocortin (POMC) neuronsCellular estrogen receptorsPro-opiomelanocortin cellsTracer horseradish peroxidaseΒ-endorphin cellsHormone neuronsImmunoreactive neuronsCatecholaminergic innervationCatecholaminergic neuronsRetrograde tracingSynaptic contactsEstrogen actionCatecholamine fibersAxon terminalsBeta-endorphin innervation of dopamine neurons in the rat hypothalamus: a light and electron microscopic double immunostaining study
Horvath TL, Naftolin F, Leranth C. Beta-endorphin innervation of dopamine neurons in the rat hypothalamus: a light and electron microscopic double immunostaining study. Endocrinology 1992, 131: 1547-1555. PMID: 1354605, DOI: 10.1210/endo.131.3.1354605.Peer-Reviewed Original ResearchConceptsDopamine neuronsZona incertaDopamine cellsSynaptic connectionsCell bodiesDouble immunostaining experimentsHypophyseal hormone secretionHypothalamic dopaminergic systemFemale rat brainHypothalamic dopaminergic neuronsDorsomedial hypothalamic nucleusDopamine cell bodiesReceptor-containing cellsDouble immunostaining studiesLight microscopic examinationPutative synaptic connectionsLH releaseDopamine innervationImmunoreactive boutonsPeriventricular areaDopaminergic neuronsPRL secretionSynaptic contactsArcuate nucleusHormone secretionPresence of calbindin and lack of parvalbumin in progesterone receptor-containing neurons of the monkey mediobasal hypothalamus
Horvath TL, Leranth C, Naftolin* F. Presence of calbindin and lack of parvalbumin in progesterone receptor-containing neurons of the monkey mediobasal hypothalamus. Neuroscience 1992, 50: 309-314. PMID: 1436493, DOI: 10.1016/0306-4522(92)90425-2.Peer-Reviewed Original ResearchConceptsProgesterone receptor-containing neuronsReceptor-containing neuronsReceptor-containing cellsCalbindin-immunoreactive neuronsProgesterone receptorAsymmetric synaptic contactsPresence of calbindinCentral nervous systemAfrican green monkeysLight microscopic resultsGABA neuronsGABAergic neuronsPeriventricular areaSynaptic contactsMonkey hypothalamusPostsynaptic targetsExcitatory fibresInfundibular nucleusMediobasal hypothalamusCalcium-binding proteinsNervous systemCalbindin cellsCalbindinNeuronsParvalbumin content